已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,則|
b
|等于(  )
A、
10
2
7
B、
5
2
或2
2
C、
5
2
D、2
2
考點:平面向量數(shù)量積的坐標表示、模、夾角
專題:平面向量及應用
分析:根據(jù)題意,平面向量
a
、
b
共線且反向,求m的值,即可得出|
b
|.
解答: 解:∵平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,
∴m(2m+1)-3×2=0,
解得m=-2,或m=
3
2
;
驗證m=
3
2
時不滿足題意,
b
=(2,-2);
∴|
b
|=
22+(-2)2
=2
2

故選:D.
點評:本題考查了平面向量的應用問題,解題時應用平面向量的坐標表示求向量共線問題,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時,f(x)=-x+1.
(1)畫出函數(shù)f(x)的圖象;寫出函數(shù)的解析式;
(2)根據(jù)圖象,寫出f(x)的單調(diào)區(qū)間;同時寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=loga
1-mx
x-1
是奇函數(shù)(a>0且a≠1)
(1)求m的值;
(2)當0<a<1時,判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性并用定義證明;
(3)當a>1時,x∈(r,a-2)時,f(x)的值域是(1,+∞),求a與r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

總體由編號為01,02,…,19,20的個體組成,利用下面的隨機數(shù)表選取7個個體,選取方法是從隨機數(shù)表第1行的第3列和第4列數(shù)字開始由左到右依次選取兩個數(shù),則選出的第7個個體的編號為
 

78166572080263140702436997280198
32049234493582003623486969387481

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當生物死亡時,他機體內(nèi)原有的碳14含量按確定的規(guī)律衰減,大約每經(jīng)過5730年衰減為原來的一半,這個時間稱為“半衰期”,據(jù)此規(guī)律,生物體內(nèi)碳14的含量P與死亡年數(shù)t間的函數(shù)關系式為( 。
A、P=(
1
2
)t
B、P=(
1
2
)5730t
C、P=(
1
2
)
t
5730
D、P=(
1
2
)
5730
t

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線3x-2y-6=0在x軸上的截距為a,在y軸上的截距為b,則(  )
A、a=2,b=3
B、a=-2,b=-3
C、a=-2,b=3
D、a=2,b=-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=4sin(ωx-
π
4
)sin(ωx+
π
4
)(ω>0)的最小正周期為π,且sinα=
3
5
,則f(α)=(  )
A、
7
25
B、-
14
25
C、
24
25
D、-
12
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知扇形OAB的周長為4,弧長為AB.
(1)當∠AOB=60°時,求此時弧的半徑;
(2)當扇形面積最大時,求此時圓心角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項和,若a1=-2014,
S2014
2014
-
S2008
2008
=6,則S2013等于( 。
A、2013B、-2013
C、-4026D、4026

查看答案和解析>>

同步練習冊答案