已知f(x)=loga
1-mx
x-1
是奇函數(shù)(a>0且a≠1)
(1)求m的值;
(2)當0<a<1時,判斷f(x)在區(qū)間(1,+∞)上的單調性并用定義證明;
(3)當a>1時,x∈(r,a-2)時,f(x)的值域是(1,+∞),求a與r的值.
考點:函數(shù)奇偶性的性質
專題:函數(shù)的性質及應用
分析:(1)根據(jù)函數(shù)f(x)是奇函數(shù),建立條件關系,即可求出m的值;
(2)根據(jù)函數(shù)單調性的定義進行證明;
(3)由題設x∈(r,a-2)時,f(x)的值的范圍恰為(1,+∞),可根據(jù)函數(shù)的單調性確定出兩個參數(shù)a及r的方程,解方程得出兩個參數(shù)的值.
解答: 解:(1)∵f(x)=loga
1-mx
x-1
(a>0且a≠1,m≠1)是奇函數(shù),
∴f(-x)=-f(x),
即f(-x)+f(x)=0,
∴l(xiāng)oga
1+mx
x+1
+loga
1-mx
x-1
=0,
即m=±1,
∵m≠1,
∴m=-1,
此時f(x)=loga
1+x
x-1
,滿足f(-x)=-f(x),
即f(x)是奇函數(shù).
∴m=-1.
(2)解:設1<x1<x2,則:
x1+1
x1-1
-
x2+1
x2-1
=
2(x2-x1)
(x1-1)(x2-1)
;
∵1<x1<x2,∴x2-x1>0,x1-1>0,x2-1>0;
x1+1
x1-1
x2+1
x2-1
;
又0<a<1,
則loga
x1+1
x1-1
-loga
x2+1
x2-1
<0,
即f(x1)<f(x2);
∴函數(shù)f(x)在(1,+∞)上是增函數(shù);
(3)(3)因為x∈(r,a-2),定義域D=(-∞,-1)∪(1,+∞),
1°當r≥1時,則1≤r<a-2,即a>3,…(14分)
所以f(x)在(r,a-2)上為減函數(shù),值域恰為(1,+∞),所以f(a-2)=1,…(15分)
即loga
1+a-2
a-2-1
=loga
a-1
a-3
=1,即
a-1
a-3
=a,…(16分)
所以a=2+
3
且r=1 …(18分)
2°當r<1時,則(r,a-2)?(-∞,-1),所以0<a<1,這與a>1不合,
所以a=2+
3
且r=1.
點評:本小題主要考查函數(shù)單調性的應用、函數(shù)奇偶性的應用、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知tanα和cosα是關于x的方程5x2-mx+4=0的兩根,且α在第二象限
(1)求tanα及m的值;
(2)求
2sin2α-sinα•cosα+3cos2α
1+sin2α
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是拋物線x2=4y的焦點,P是該拋物線上的動點,則線段PF中點軌跡方程是( 。
A、x2=y-
1
2
B、x2=2y-
1
16
C、x2=2y-2
D、x2=2y-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知
AB
AC
=3
BA
BC

(Ⅰ)求證tanB=3tanA;
(Ⅱ)若a2+b2-c2=
2
5
5
ab,求角A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,則“a2<2a”是“a<2”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若log23•log34•log4m=log3
27
,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項為Sn,已知a1=-11,a3+a7=-6,當Sn取最小值時,n=( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,則|
b
|等于( 。
A、
10
2
7
B、
5
2
或2
2
C、
5
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,橫坐標、縱坐標均為整數(shù)的點稱為整點,如果函數(shù)f(x)的圖象恰好通過n(n∈N*)個整點,則稱函數(shù)f(x)為n階整點函數(shù).有下列函數(shù):①y=x3②y=(
1
3
|x|③y=
2-x
x-1
,④y=ln|x|,其中是二階整點函數(shù)的序號是
 

查看答案和解析>>

同步練習冊答案