【題目】某家庭記錄了未使用節(jié)水龍頭天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭天的日用水量頻數(shù)分布表
日用水量 | |||||||
頻數(shù) |
使用了節(jié)水龍頭天的日用水量頻數(shù)分布表
日用水量 | ||||||
頻數(shù) |
(Ⅰ)作出使用了節(jié)水龍頭天的日用水量數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分別是AB,CD的中點(diǎn),將四邊形ADFE沿直線EF進(jìn)行翻折,給出四個結(jié)論:①DF⊥BC;
②BD⊥FC;
③平面DBF⊥平面BFC;
④平面DCF⊥平面BFC.
則在翻折過程中,可能成立的結(jié)論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個警亭有直道相通,已知在的正北方向6千米處,在的正東方向千米處.
(1)警員甲從出發(fā),沿行至點(diǎn)處,此時,求的距離;
(2)警員甲從出發(fā)沿前往,警員乙從出發(fā)沿前往,兩人同時出發(fā),甲的速度為3千米/小時,乙的速度為6千米/小時.兩人通過專用對講機(jī)保持聯(lián)系,乙到達(dá)后原地等待,直到甲到達(dá)時任務(wù)結(jié)束.若對講機(jī)的有效通話距離不超過9千米,試問兩人通過對講機(jī)能保持聯(lián)系的總時長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF中,AB=,CE=1,CE⊥平面ABCD.
(1)求異面直線DF與BE所成角的余弦值;
(2)求二面角A-DF-B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計表,其中“√”表示購買,“×”表示未購買.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計顧客同時購買乙和丙的概率;
(Ⅱ)估計顧客在甲、乙、丙、丁中同時購買中商品的概率;
(Ⅲ)如果顧客購買了甲,則該顧客同時購買乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標(biāo)號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了鞏固全國文明城市創(chuàng)建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項整治行為.為了了解市民對此項工作的“支持”與“反對”態(tài)度,隨機(jī)從存在違章搭建的戶主中抽取了男性、女性共名進(jìn)行調(diào)查,調(diào)查結(jié)果如下:
支持 | 反對 | 合計 | |
男性 | |||
女性 | |||
合計 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為對此項工作的“支持”與“反對”態(tài)度與“性別”有關(guān);
(2)現(xiàn)從參與調(diào)查的女戶主中按此項工作的“支持”與“反對”態(tài)度用分層抽樣的方法抽取人,從抽取的人中再隨機(jī)地抽取人贈送小禮品,記這人中持“支持”態(tài)度的有人,求的分布列與數(shù)學(xué)期望.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 某汽車租賃公司為了調(diào)查A, B兩種車型的出租情況,現(xiàn)隨機(jī)抽取這兩種車型各50輛,分別統(tǒng)計了每輛車在某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:
A型車
出租天數(shù) | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 3 | 30 | 5 | 7 | 5 |
B型車
出租天數(shù) | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 10 | 10 | 15 | 10 | 5 |
(1)試根據(jù)上面的統(tǒng)計數(shù)據(jù),判斷這兩種車型在本星期內(nèi)出租天數(shù)的方差的大小關(guān)系(只需寫出結(jié)果);
(2)現(xiàn)從出租天數(shù)為3天的汽車(僅限A, B兩種車型)中隨機(jī)抽取一輛,試估計這輛汽車是A型車的概率;
(3)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要購買一輛汽車,請你根據(jù)所學(xué)的統(tǒng)計知識,給出建議應(yīng)該購買哪一種車型,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前n項和為, , ,數(shù)列滿足: , , ,數(shù)列的前n項和為
(1)求數(shù)列的通項公式及前n項和;
(2)求數(shù)列的通項公式及前n項和;
(3)記集合,若M的子集個數(shù)為16,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com