分析 (1)由已知及正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理化簡已知可得$cosC=\frac{1}{2}$,結(jié)合C的范圍,即可得解C的值.
(2)由已知及余弦定理得ab=6,利用三角形面積公式即可計算得解.
解答 (本題滿分為12分)
解:(1)由已知及正弦定理得,$cosC(sinAcosB+cosAsinB)=\frac{1}{2}sinC$,
即2cosCsin(A+B)=sinC.
故2cosCsinC=sinC,
可得$cosC=\frac{1}{2}$,
因為:C∈(0,π),
所以$C=\frac{π}{3}$.…(6分)
(2)由已知及余弦定理得,a2+b2-2abcosC=7,
又$a+b=5,C=\frac{π}{3}$,
故a2+b2-ab=(a+b)2-3ab=25-3ab=7,
因此,ab=6,
所以△ABC的面積$S=\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$.…(12分)
點評 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,余弦定理,三角形面積公式在解三角形中的綜合應用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 樣本方差反映了所有樣本數(shù)據(jù)與樣本平均值的偏離程度 | |
B. | 殘差平方和越小的模型,擬合的效果越好 | |
C. | 用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好 | |
D. | 在回歸分析中,代表了數(shù)據(jù)點和它在回歸直線上相應位置的差異的是殘差平方和 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{4}$ | C. | -$\frac{1}{4}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com