13.若a>0,不等式|2ax|<1的解集是{x|-2<x<2},則a的值為( 。
A.-1B.$\frac{1}{4}$C.-$\frac{1}{4}$D.5

分析 先求出不等式的解集,再根據(jù)所告訴的解集得到$\frac{1}{2a}$=2,解得即可.

解答 解:∵a>0,不等式|2ax|<1,
∴-$\frac{1}{2a}$<x<$\frac{1}{2a}$,
∵不等式|2ax|<1的解集是{x|-2<x<2},
∴$\frac{1}{2a}$=2,
解得a=$\frac{1}{4}$,
故選:B

點評 本題考查了絕對值不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若復(fù)數(shù)z=(3-i)•(2-i),則z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.命題:“若x2<1,則-1<x<1”的逆否命題是真命題(填真假).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列能構(gòu)成集合的是( 。
A.中央電視臺著名節(jié)目主持人B.我市跑得快的汽車
C.贛州市所有的中學(xué)生D.贛州的高樓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.復(fù)平面內(nèi)復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i,
(1)若復(fù)數(shù)z是純虛數(shù),求m的值;
(2)若在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點位于第四象限,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知acosBcosC+bcosAcosC=$\frac{c}{2}$.
(1)求角C;
(2)若c=$\sqrt{7}$,a+b=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求函數(shù)y=$\frac{\sqrt{3-x}}{x-1}$的定義域;
(2)求函數(shù)y=-x2+4x-2(1≤x≤4)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將三項式(x2+x+1)n展開,當(dāng)n=1,2,3,…時,得到如下左圖所示的展開式,如圖所示的廣義楊輝三角形:(x2+x+1)0=1第0行                                                              1
(x2+x+1)1=x2+x+1第1行                                                     1 1 1
(x2+x+1)2=x4+2x3+3x2+2x+1第2行                                     1 2 3 2 1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1第3行                          1 3 6 7 6 3 1
(x2+x+1)4=x8+4x7+10x6+16x5+19x4+16x3+10x2+4x+1第4行   1 4 10 16 19 16 10 4 1

觀察多項式系數(shù)之間的關(guān)系,可以仿照楊輝三角構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法:第0行為1,以下各行每個數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計為0)之和,第k行共有2k+1個數(shù).若在(1+ax)(x2+x+1)5的展開式中,x8項的系數(shù)為75,則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x-a|+2x.
(1)當(dāng)a=3時,方程f(x)=m的解的個數(shù);
(2)對任意x∈[1,2]時,函數(shù)f(x)的圖象恒在函數(shù)g(x)=2x+1圖象的下方,求a的取值范圍;
(3)f(x)在(-4,2)上單調(diào)遞增,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案