6.若$α=\frac{7π}{6}$,則計(jì)算1+sin(α-2π)•sin(π+α)-2cos2(-α)所得的結(jié)果為$-\frac{1}{4}$.

分析 直接利用誘導(dǎo)公式化簡(jiǎn)表達(dá)式,代入求解即可.

解答 解:1+sin(α-2π)•sin(π+α)-2cos2(-α)
=1+sinα•sinα-2cos2α
=1+sin2$\frac{7π}{6}$-2cos2$\frac{7π}{6}$
=1+$\frac{1}{4}$$-2×\frac{3}{4}$
=$-\frac{1}{4}$.
故答案為:$-\frac{1}{4}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及特殊角的三角函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=-x2+|x|的遞減區(qū)間是( 。
A.[-$\frac{1}{2}$,0]B.[$\frac{1}{2}$,+∞]C.[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞)D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.有四個(gè)實(shí)數(shù),前3個(gè)數(shù)成等比數(shù)列,且它們的積為216,后三個(gè)數(shù)成等差數(shù)列,且它們的和為12,求這四個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若函數(shù)f(x)=log3(x2-2ax+5)在區(qū)間(-∞,1]內(nèi)是減函數(shù),則實(shí)數(shù)a的取值范圍[1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.下列四個(gè)命題中
①命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”
②“x=4”是“x2-3x-4=0”的充分條件
③命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆命題為真命題
④命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0.則m≠0且n≠0”
⑤對(duì)空間任意一點(diǎn)O,若滿足$\overrightarrow{OP}=\frac{3}{4}\overrightarrow{OA}+\frac{1}{8}\overrightarrow{OB}+\frac{1}{8}\overrightarrow{OC}$,則P,A,B,C四點(diǎn)一定共面.
其中真命題的為①②⑤(將你認(rèn)為是真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.給出下列命題:①直線$x+\sqrt{3}y-1=0$的傾斜角是$\frac{2π}{3}$;②已知過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)F的直線與拋物線C交于A(x1,y1),B(x2,y2)兩點(diǎn),則有${x_1}{x_2}=\frac{p^2}{4},{y_1}{y_2}=-{p^2}$;③已知F1、F2為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦點(diǎn),點(diǎn)P為雙曲線右支上異于頂點(diǎn)的任意一點(diǎn),則△PF1F2的內(nèi)心I始終在一條直線上.
其中所有正確命題的序號(hào)為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lg$\frac{1-x}{1+x}$,若f(a)=b,求f(-a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知F1、F2是雙曲線的兩焦點(diǎn),過(guò)F2且垂直于實(shí)軸的直線交雙曲線于P、Q兩點(diǎn),∠PF1Q=60°,則離心率e=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.
(1)證明:平面A1BD∥平面CD1B1
(2)求三棱柱ABD-A1B1D1的體積;
(3)求直線D1C與面ABCD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案