19.若a,b∈{-1,1,2,3},則直線ax+by=0與圓x2+(y+2)2=2有交點(diǎn)的概率為( 。
A.$\frac{3}{8}$B.$\frac{11}{16}$C.$\frac{5}{8}$D.$\frac{5}{16}$

分析 先求了基本事件總數(shù)n=4×4=16,直線ax+by=0與圓x2+(y+2)2=2有交點(diǎn),即圓心(0,-2)到直線ax+by=0的距離d=$\frac{|-2b|}{\sqrt{{a}^{2}+^{2}}}$≤$\sqrt{2}$,即a2≥b2,由此列舉出直線ax+by=0與圓x2+(y+2)2=2有交點(diǎn)包含的基本事件個(gè)數(shù),由此能求出直線ax+by=0與圓x2+(y+2)2=2有交點(diǎn)的概率.

解答 解:∵a,b∈{-1,1,2,3},
∴基本事件總數(shù)n=4×4=16,
∵直線ax+by=0與圓x2+(y+2)2=2有交點(diǎn),
∴圓心(0,-2)到直線ax+by=0的距離d=$\frac{|-2b|}{\sqrt{{a}^{2}+^{2}}}$≤$\sqrt{2}$,即a2≥b2,
∴線ax+by=0與圓x2+(y+2)2=2有交點(diǎn)包含的基本事件(a,b)有:
(-1,-1),(-1,1),(1,1),(1,-1),(2,-1),(2,1),(2,2),(3,-1),(3,1),(3,2),(3,3),
共有11個(gè),
∴直線ax+by=0與圓x2+(y+2)2=2有交點(diǎn)的概率為p=$\frac{11}{16}$.
故選:B.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,點(diǎn)B1在底面內(nèi)的射影恰好是BC的中點(diǎn),且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B-AB1-C1的余弦值為$-\frac{5}{7}$,求斜三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}中,a3=5,a2+a6=14,且2${\;}^{{a}_{n}}$,2${\;}^{{a}_{n+1}}$,2${\;}^{{a}_{n+2}}$成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=an-(-1)nn,數(shù)列{bn}的前n項(xiàng)和為Tn,求T21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義1:若函數(shù)f(x)在區(qū)間D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在區(qū)間D上也可導(dǎo),則稱函數(shù)f(x)在區(qū)間D上的存在二階導(dǎo)數(shù),記作f″(x)=[f′(x)]′.
定義2:若函數(shù)f(x)在區(qū)間D上的二階導(dǎo)數(shù)恒為正,即f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間D上為凹函數(shù).已知函數(shù)f(x)=x3-$\frac{3}{2}$x2+1在區(qū)間D上為凹函數(shù),則x的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x∈Z|-1≤x≤2},B={x|log3x<1},則A∩B=(  )
A.{-1,0,1,2}B.{0,1,2}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)z滿足z(4-i)=5+3i(i為虛數(shù)單位),則$\overline z$為( 。
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知拋物線y2=8x的準(zhǔn)線過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個(gè)焦點(diǎn),則當(dāng)$\frac{4}{a^2}+\frac{1}{b^2}$取得最小值時(shí),雙曲線的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一廠家生產(chǎn)A、B、C三類空氣凈化器,每類凈化器均有經(jīng)典版和至尊版兩種型號(hào),某月的產(chǎn)量如表(單位:臺(tái)):
空氣凈化器A空氣凈化器B空氣凈化器C
經(jīng)典版100150400
至尊版300450600
(I)在C類空氣凈化器中,用分層抽樣的方法抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2輛,求至少有1臺(tái)經(jīng)典版空氣凈化器的概率;
(Ⅱ)用隨機(jī)抽樣的方法從B類空氣凈化器中抽取8臺(tái),經(jīng)檢測(cè)它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8臺(tái)空氣凈化器的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x+1|+|2x-4|.
(Ⅰ)解關(guān)于x的不等式f(x)<9;
(Ⅱ)若直線y=m與曲線y=f(x)圍成一個(gè)三角形,求實(shí)數(shù)m的取值范圍,并求所圍成的三角形面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案