16.袋子里有兩個不同的紅球和兩個不同的白球,從中任意取兩個球,則這兩個球顏色不相同的概率為$\frac{2}{3}$ .

分析 從中任取兩個球共有紅1紅2,紅1白1,紅1白2,紅2白1,紅2白2,白1白2,共6種取法,其中顏色不相同只有4種,根據(jù)概率公式計算即可.

解答 解:從中任取兩個球共有:
紅1紅2,紅1白1,紅1白2,紅2白1,
紅2白2,白1白2,共6種取法,其中顏色不相同只有4種,
故從中任取兩個球,則這兩個球顏色不相同的概率:
P=$\frac{4}{6}$=$\frac{2}{3}$;
故答案為:$\frac{2}{3}$.

點評 本題考查了古典概型概率的問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則算籌式表示的數(shù)字為368.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,直線:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(為參數(shù)).寫出曲線C的參數(shù)方程,直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,首項不為零,且an=$\sqrt{3}$an-1(n∈N*,n≥2),Sn為{an}的前n項和,令Tn=$\frac{10{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,則Tn的最大值為2+2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)平面α的法向量為(1,-2,2),平面β的法向量為(2,λ,4),若α∥β,則λ=( 。
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標系中.以原點為極點,x軸的正半軸為極軸建立極坐標系已知曲線C:pcos2θ=2asinθ(a>0)過點P(-4,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))直線l與曲線C分別交于點M,N.
(1)寫出C的直角坐標方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.流程圖如圖所示的流程圖的運行結(jié)果是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義R在上的偶函數(shù),且f(x+1)=-f(x),若f(x)在[-1,0]上單調(diào)遞減,則f(x)在[1,3]上是( 。
A.增函數(shù)B.減函數(shù)C.先增后減的函數(shù)D.先減后增的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標系xOy中,橢圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點P(1,2),設(shè)直線l與橢圓C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案