分析 由已知得點P(x,y)到F1(-6,0),F(xiàn)2(6,0)的距離之和為20,由此利用橢圓定義能求出方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20化簡的結(jié)果.
解答 解:∵方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20,
∴點P(x,y)到F1(-6,0),F(xiàn)2(6,0)的距離之和為20,
∵20>|F1F2|,
∴方程是以F1(-6,0),F(xiàn)2(6,0)為焦點,以10為長軸的橢圓,
∴a=10,c=6,b=$\sqrt{100-36}$=8,
∴方程$\sqrt{(x-6)^{2}+{y}^{2}}$+$\sqrt{(x+6)^{2}+{y}^{2}}$=20化簡的結(jié)果是:$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}=1$.
故答案為:$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{64}=1$.
點評 本題考查方程化簡結(jié)果的求法,是基礎(chǔ)題,解題時要認真審題,注意橢圓定義的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\{y|0<y<\frac{1}{2}\}$ | B. | {y|0<y<1} | C. | $\{y|\frac{1}{2}<y<1\}$ | D. | $\{y|0≤y<\frac{1}{2}\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A2n+1-1 | B. | 2n+2-1 | C. | $\frac{(n+2)(1+{2}^{n+1})}{2}$ | D. | $\frac{(n+1)(1+{2}^{n+1})}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)∈M且g(x)∈M | B. | f(x)∉M,g(x)∈M | C. | f(x)∈M,g(x)∉M | D. | f(x)∉M且g(x)∉M |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 既不充分也不必要條件 | D. | 充要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com