【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=﹣x2+2|x|+1的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 |
| m | 2 | 1 | 2 | 1 | ﹣2 | … |
其中,m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①方程﹣x2+2|x|+1=0有 個實數(shù)根;
②關(guān)于x的方程﹣x2+2|x|+1=a有4個實數(shù)根時,a的取值范圍是 .
【答案】(1)1;(2)答案見解析;(3)①函數(shù)的最大值是2,沒有最小值;②當(dāng)x>1時,y隨x的增大而減;(答案不唯一)(4)①2;②1<a<2.
【解析】
(1)根據(jù)對稱性或直接代數(shù)計算即可得答案;
(2)描點(diǎn)畫出圖形即可;
(3)可寫函數(shù)的最大值和最小值問題,也可確定一個范圍寫增減性問題(答案不唯一);
(4)①當(dāng)y=0時,圖象與x軸的交點(diǎn)有兩個,則方程有2個實數(shù)根;②直線y=a與圖象有4個交點(diǎn),即表示方程有4個實根,據(jù)此結(jié)合圖象確定a的范圍即可.
(1)當(dāng)時,,所以m=1,
故答案為:1;
(2)根據(jù)表格數(shù)據(jù),描點(diǎn)畫圖如下:
(3)根據(jù)圖象可知,函數(shù)具有如下性質(zhì):①函數(shù)的最大值是2,沒有最小值;②當(dāng)x>1時,y隨x的增大而減小;(答案不唯一)
(4)①由圖象可知:函數(shù)圖象與x軸有兩個交點(diǎn),
所以方程﹣x2+2|x|+1=0有2個實數(shù)根,
故答案為:2;
②方程﹣x2+2|x|+1=a有4個實數(shù)根時,
即表示y=a與圖象有4個交點(diǎn),
故由圖象可知,a的取值范圍是:1<a<2.
故答案為:1<a<2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,2,2),B(2,0,0),C(0,2,-2).
(1)寫出直線BC的一個方向向量;
(2)設(shè)平面α經(jīng)過點(diǎn)A,且BC是α的法向量,M(x,y,z)是平面α內(nèi)的任意一點(diǎn),試寫出x,y,z滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓系方程: (, ), 是橢圓的焦點(diǎn), 是橢圓上一點(diǎn),且.
(1)求的方程;
(2)為橢圓上任意一點(diǎn),過且與橢圓相切的直線與橢圓交于, 兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,求證: 的面積為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校擬派一名跳高運(yùn)動員參加一項校際比賽,對甲、乙兩名跳高運(yùn)動員進(jìn)行了8次選拔比賽,他們的成績(單位:m)如下:
甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;
乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.
經(jīng)預(yù)測,跳高1.65m就很可能獲得冠軍.該校為了獲取冠軍,可能選哪位選手參賽?若預(yù)測跳高1.70m方可獲得冠軍呢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(3)若將頻率視為概率,現(xiàn)從全市高二學(xué)生中隨機(jī)查看5名學(xué)生的期中考試語文成績,記成績優(yōu)秀(不低于80分)的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是20個國家和地區(qū)的二氧化碳排放總量及人均二氧化碳排放量.
國家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | 國家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | |
A | 10330000 | 7.4 | K | 480000 | 2.0 | |
B | 5300000 | 16.6 | L | 480000 | 7.5 | |
C | 3740000 | 7.3 | M | 470000 | 3.9 | |
D | 2070000 | 1.7 | N | 410000 | 5.3 | |
E | 1800000 | 12.6 | O | 390000 | 16.9 | |
F | 1360000 | 10.7 | P | 390000 | 6.4 | |
G | 840000 | 10.2 | Q | 370000 | 5.7 | |
H | 630000 | 12.7 | R | 330000 | 6.2 | |
I | 550000 | 15.7 | S | 320000 | 6.2 | |
J | 510000 | 2.6 | T | 490000 | 16.6 |
(1)這20個國家和地區(qū)人均二氧化碳排放量的中位數(shù)是多少?
(2)針對這20個國家和地區(qū),請你找出二氧化碳排放總量較少的前15%的國家和地區(qū).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的各棱長均相等, 底面,E,F分別為棱的中點(diǎn).
(1)過作平面α,使得直線BE//平面α,若平面α與直線交于點(diǎn)H,指出點(diǎn)H所在的位置,并說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
(2)過點(diǎn)且與直線平行的直線交于, 兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,.
(I)求證:平面ABCD;
(II)求證:平面ACF⊥平面BDF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com