【題目】已知圓經(jīng)過兩點(diǎn),,且圓心在直線上.

(1)求圓的方程;

(2)設(shè)圓軸相交于兩點(diǎn),點(diǎn)為圓上不同于的任意一點(diǎn),直線、軸于、點(diǎn).當(dāng)點(diǎn)變化時(shí),以為直徑的圓是否經(jīng)過圓內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.

【答案】(1);(2)當(dāng)點(diǎn)變化時(shí),以為直徑的圓經(jīng)過定點(diǎn).證明見解析

【解析】

1)設(shè)圓圓心為,由求得的值,可得圓心坐標(biāo)和半徑,從而求得圓的標(biāo)準(zhǔn)方程;

2)設(shè)),由條件求得,的坐標(biāo),可得圓的方程,再根據(jù)定點(diǎn)在軸上,求出定點(diǎn)的坐標(biāo)。

(1)設(shè)圓圓心為,

得,,

解得,∴,

半徑為,

所以圓

(2)設(shè)),則

,

所以,,

,

的方程為

化簡(jiǎn)得,

由動(dòng)點(diǎn)關(guān)于軸的對(duì)稱性可知,定點(diǎn)必在軸上,

,得.又點(diǎn)在圓內(nèi),

所以當(dāng)點(diǎn)變化時(shí),以為直徑的圓經(jīng)過定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的最小正周期及單調(diào)增區(qū)間;

2)當(dāng)時(shí),求函數(shù)的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),離心率等于,該橢圓的一個(gè)長軸端點(diǎn)恰好是拋物線的焦點(diǎn).

1)求橢圓的方程;

2)已知直線與橢圓的兩個(gè)交點(diǎn)記為,其中點(diǎn)在第一象限,點(diǎn)、是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)、運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),若,且上恒成立,求的取值范圍;

3)設(shè)函數(shù),若,且上存在零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠郑芏嘞M(fèi)者對(duì)手機(jī)流量的需求越來越大.長沙某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);

(2)①求出關(guān)于的回歸方程;

②若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請(qǐng)用所求回歸方程預(yù)測(cè)長沙市一個(gè)月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據(jù):,.

參考公式:相關(guān)系數(shù),回歸直線方程,

其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將三棱錐拼接得到如圖所示的多面體,其中,,,分別為,,的中點(diǎn),.

1)當(dāng)點(diǎn)在直線上時(shí),證明:平面;

2)若均為面積為的等邊三角形,求該多面體體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為4的等邊三角形,,的中點(diǎn).

1)證明:平面.

2)若是等邊三角形,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校300名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘).

平均每天鍛煉的時(shí)間/分鐘

總?cè)藬?shù)

34

51

59

66

65

25

將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為鍛煉達(dá)標(biāo)”.

1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計(jì)

40

160

合計(jì)

2)通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為鍛煉達(dá)標(biāo)與性別有關(guān)?

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“2019是一個(gè)重要的時(shí)間節(jié)點(diǎn)——中華人民共和國成立70周年,和全面建成小康社會(huì)的 關(guān)鍵之年.70年披荊斬棘,70年砥礪奮進(jìn),70年風(fēng)雨兼程,70年滄桑巨變,勤勞勇敢的中國 人用自己的雙手創(chuàng)造了一項(xiàng)項(xiàng)輝煌的成績,取得了舉世矚目的成就.趁此良機(jī),李明在天貓網(wǎng)店銷售新中國成立70周年紀(jì)念冊(cè),每本紀(jì)念冊(cè)進(jìn)價(jià)4元,物流費(fèi)、管理費(fèi)共為/本,預(yù)計(jì)當(dāng)每本紀(jì)念冊(cè)的售價(jià)為元(時(shí),月銷售量為千本.

(I)求月利潤(千元)與每本紀(jì)念冊(cè)的售價(jià)X的函數(shù)關(guān)系式,并注明定義域:

(II)當(dāng)為何值時(shí),月利潤最大?并求出最大月利潤.

查看答案和解析>>

同步練習(xí)冊(cè)答案