12.不等式$\frac{2+x}{2-x}$>0的解集為(-2,2).

分析 首先將不等式轉(zhuǎn)化為整式不等式解之.

解答 解:不等式$\frac{2+x}{2-x}$>0等價于(x+2)(x-2)<0,所以不等式的解集為(-2,2);
故答案為:(-2,2).

點評 本題考查了分式不等式的解法;關(guān)鍵是正確轉(zhuǎn)化為整式不等式解之.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=cos$\frac{π}{2}$x,對任意的實數(shù)t,記f(x)在[t,t+1]上的最大值為M(t),最小值為m(t),則函數(shù)h(t)=M(t)-m(t)的值域為$[1-\frac{{\sqrt{2}}}{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和Sn=$\frac{1}{2}$n(n-1),且an是bn與1的等差中項.
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)若cn=$\frac{1}{{a}_{n}(n+1)}$(n≥2),求c2+c3+c4+…+cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)a,b∈R,且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg$\frac{1+ax}{1+2x}$是奇函數(shù).
(1)求a的值;
(2)求b的取值范圍;
(3)用定義討論并證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)求函數(shù)f(x)=$\frac{(x+5)(x+2)}{x+1}$(x<-1)的最大值,并求相應(yīng)的x的值.
(2)已知正數(shù)a,b滿足2a2+3b2=9,求a$\sqrt{1+b^2}$的最大值并求此時a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=x2-ax+2,若對任意x∈[1,+∞),f(x)>0恒成立,則實數(shù)a的取值范圍(-∞,2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知a,b為正整數(shù),a≠b,x>0,y>0.試比較$\frac{{a}^{2}}{x}$+$\frac{^{2}}{{y}$與$\frac{(a+b)^2}{x+y}$的大小,并指出兩式相等的條件.
(2)用(1)所得結(jié)論,求函數(shù)y=$\frac{3}{x}$+$\frac{4}{1-3x}$,x∈(0,$\frac{1}{3}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓心角是2弧度的扇形面積為16cm2,則扇形的周長為16cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0≤φ≤$\frac{π}{2}$)在x∈(0,7π)內(nèi)只取到一個最大值和一個最小值,且當(dāng)x=π時,ymax=3;當(dāng)x=6π,ymin=-3.
(1)求出此函數(shù)的解析式;
(2)求該函數(shù)的單調(diào)遞增區(qū)間;
(3)是否存在實數(shù)m,滿足不等式Asin(ω$\sqrt{-{m}^{2}+2m+3}$+φ)>Asin(ω$\sqrt{-{m}^{2}+4}$+φ)?若存在,求出m的范圍(或值),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案