精英家教網 > 高中數學 > 題目詳情
已知橢圓
x2
25
+
y2
b2
=1(0<b<5)的離心率為
3
5
,則b等于(  )
分析:由于0<b<5,從而焦點在x軸上,則有c2=25-b2,再結合離心率求解即可.
解答:解:由題意知,橢圓的焦點在x軸上,則c2=25-b2
又∵e=
c
a
=
25-b2
5
=
3
5
,
∴b=4.
故選D.
點評:本題主要考查橢圓的標準方程,焦點的位置以及橢圓離心率的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知動點P(x,y)在橢圓
x2
25
+
y2
16
=1上,若A點坐標為(1,0),|
AM
|=1且
PM
AM
=0
,則|
PM
|
的最小值是
119
3
119
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知焦點在y軸上的橢圓方程為
x2
25-k
+
y2
k-9
=1
,則k的取值范圍為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1
,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點.設
PA
=λ1
AF
PB
=λ2
BF
,則λ12等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P是
x2
25
+
y2
9
=1(x≠0,y≠0)
上的動點P,F1、F2是橢圓的兩個焦點,O是坐標原點,若M是∠F1PF2的角平分線上一點,且
F1M
MP
=0
,則|
OM
|
的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓
x2
25
+
y2
9
=1
,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點.設
PA
=λ1
AF
,
PB
=λ2
BF
,則λ12等于( 。
A.-
9
25
B.-
50
9
C.
50
9
D.
9
25

查看答案和解析>>

同步練習冊答案