19.正態(tài)總體N(1,9)在區(qū)間(2,3)和(-1,0)上取值的概率分別為m,n,則m=n.

分析 ξ~N(1,9),曲線關(guān)于x=1對(duì)稱,由圖象的對(duì)稱性可得結(jié)果.

解答 解:∵ξ~N(1,9),
∴曲線關(guān)于x=1對(duì)稱,
∴P(-1<ξ<0)=P(2<ξ<3)
故m=n,
故答案為:m=n.

點(diǎn)評(píng) 本題主要標(biāo)準(zhǔn)正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,結(jié)合正態(tài)曲線,加深對(duì)正態(tài)密度函數(shù)的理解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=mx2+(1-3m)x-4,m∈R.
(Ⅰ)當(dāng)m=1時(shí),求f(x)在區(qū)間[-2,2]上的最大值和最小值;
(Ⅱ)解關(guān)于x的不等式f(x)>-1;
(Ⅲ)當(dāng)m<0時(shí),若存在x0∈(1,+∞),使得f(x0)>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知PA與圓O相切于點(diǎn)A,經(jīng)過點(diǎn)O的割線PBC交圓O于點(diǎn)B、C,∠APC的平分線分別交AB、AC于點(diǎn)D、E,AC=AP.
(1)證明:∠ADE=∠AED;
(2)證明PC=$\sqrt{3}$PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.關(guān)于x不等式|2x-5|>3的解集是(-∞,1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.方程|x-5|+x-5=0的解為x≤5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在三角形ABC中,A=45°,b=$\sqrt{2}$,三角形ABC的面積為$\frac{{\sqrt{3}+1}}{2}$,則$\frac{c}{sinC}$的值為$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知等比數(shù)列{an},前n項(xiàng)和Sn=3×2n+m,則其公比是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.大家知道,莫言是中國(guó)首位獲得諾貝爾獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了解程度,結(jié)果如表:
閱讀過莫言的
作品數(shù)(篇)
0~2526~5051~7576~100101~130
男生36111812
女生48131510
(1)試估計(jì)該校學(xué)生閱讀莫言作品超過50篇的概率;
(2)對(duì)莫言作品閱讀超過75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否在犯錯(cuò)誤的概率不超過0.25的前提下,認(rèn)為對(duì)莫言作品非常了解與性別有關(guān)?
非常了解一般了解合計(jì)
男生
女生
合計(jì)
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的偶函數(shù)y=f(x),對(duì)任意的x∈R,都有f(x+6)=f(x)+f(3),且函數(shù)f(x)在[0,3]上為減函數(shù),則下列結(jié)論中錯(cuò)誤的是( 。
A.f(x)≥0
B.f(1)>f(14)
C.y=f(x)的解析式可能為y=2cos2$\frac{π}{6}$x
D.若x2+y2=9與y=f(x)有且僅有三個(gè)交點(diǎn),則在[0,3]上將y=f(x)的圖象沿y軸旋轉(zhuǎn)一周得到的幾何體的體積為9π

查看答案和解析>>

同步練習(xí)冊(cè)答案