4.在三角形ABC中,A=45°,b=$\sqrt{2}$,三角形ABC的面積為$\frac{{\sqrt{3}+1}}{2}$,則$\frac{c}{sinC}$的值為$2\sqrt{2}$.

分析 由已知利用三角形面積公式可求c,利用余弦定理可求a,進(jìn)而利用正弦定理即可計(jì)算得解$\frac{c}{sinC}$的值.

解答 解:∵A=45°,b=$\sqrt{2}$,三角形ABC的面積為$\frac{{\sqrt{3}+1}}{2}$,
∴$\frac{{\sqrt{3}+1}}{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×$$\sqrt{2}$×c×$\frac{\sqrt{2}}{2}$,解得:c=$\sqrt{3}+1$,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{2+(\sqrt{3}+1)^{2}-2×\sqrt{2}×(\sqrt{3}+1)×\frac{\sqrt{2}}{2}}$=2,
∴利用正弦定理可得:$\frac{c}{sinC}=\frac{a}{sinA}=\frac{2}{\frac{\sqrt{2}}{2}}$=$2\sqrt{2}$.
故答案為:$2\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.長(zhǎng)方形ABCD的長(zhǎng)和寬分別為AB=a,BC=b,且a<b,則繞AB=a旋轉(zhuǎn)一周所得的幾何體體積為V1,繞BC=b旋轉(zhuǎn)一周所得的幾何體體積為V2,則V1與V2的關(guān)系是( 。
A.V1=V2B.V1<V2C.V1>V2D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,P為⊙O外一點(diǎn),PA是⊙O的切線,A為切點(diǎn),割線PBC與⊙O相交于B,C兩點(diǎn),且PC=3PA,D為線段BC的中點(diǎn),AD的延長(zhǎng)線交⊙O于點(diǎn)E.若PB=1,則PA的長(zhǎng)為3;AD•DE的值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x+3|的最小值為m.
(1)求m的值;
(2)若正實(shí)數(shù)a,b,c滿足a2+ac+ab+bc=m,求2a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.正態(tài)總體N(1,9)在區(qū)間(2,3)和(-1,0)上取值的概率分別為m,n,則m=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,D為BC中點(diǎn),直線AB上的點(diǎn)M滿足:3$\overrightarrow{AM}$=2λ$\overrightarrow{AD}$+(3-3λ)$\overrightarrow{AC}$(λ∈R),則$\frac{|AM|}{|MB|}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2cos x,sin x),$\overrightarrow$=(cos x,-2cos x).設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的解析式
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若不等式$\frac{kx+2k}{{k}^{2}}$>1+$\frac{x-3}{{k}^{2}}$的解為x>3,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.經(jīng)過(guò)兩點(diǎn)A(2,1),B(1,m2)的直線l的傾斜角為銳角,則m的取值范圍是( 。
A.m<1B.m>-1C.-1<m<1D.m>1或m<-1

查看答案和解析>>

同步練習(xí)冊(cè)答案