已知函數(shù).當(dāng)時(shí),函數(shù)取得極值
(1)求函數(shù)的解析式;
(2)若方程有3個(gè)解,求實(shí)數(shù)的取值范圍.

(1);(2).

解析試題分析:(1)先求出函數(shù)的導(dǎo)數(shù),進(jìn)而根據(jù)當(dāng)時(shí),函數(shù)取得極值,得到,求解方程組即可得到的值,從而可寫出函數(shù)的解析式;(2)先根據(jù)(1)確定的函數(shù)的解析式求出導(dǎo)函數(shù),然后確定函數(shù)的極大值及極小值,依題意要使方程有3個(gè)解,只須在兩個(gè)極值之間即可.
試題解析:(1)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/7c/c/sloeg3.png" style="vertical-align:middle;" />,而當(dāng)時(shí),函數(shù)取得極值
所以,由此可解得,
所以函數(shù)的解析式為
(2)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/1e/a/sfxh1.png" style="vertical-align:middle;" />,

所以處取得極大值,在處取得極小值----12分
要滿足函數(shù)有3個(gè)解,須有.
考點(diǎn):函數(shù)的導(dǎo)數(shù)與極值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中且m為常數(shù).
(1)試判斷當(dāng)時(shí)函數(shù)在區(qū)間上的單調(diào)性,并證明;
(2)設(shè)函數(shù)處取得極值,求的值,并討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在區(qū)間,上有極大值
(1)求實(shí)常數(shù)m的值.
(2)求函數(shù)在區(qū)間上的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某工廠生產(chǎn)件產(chǎn)品的成本為(元),
問:(1)要使平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在(0,1)上單調(diào)遞減.
(1)求a的取值范圍;
(2)令,求在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若存在過點(diǎn)的直線與曲線都相切,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)).
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當(dāng)的值時(shí),若直線與曲線沒有公共點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
⑴求函數(shù)處的切線方程;
⑵當(dāng)時(shí),求證:;
⑶若,且對(duì)任意恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)銷商用一輛型卡車將某種水果運(yùn)送(滿載)到相距400km的水果批發(fā)市場(chǎng).據(jù)測(cè)算,型卡車滿載行駛時(shí),每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費(fèi)外,人工工資、車損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為7.5元/L.
(1)設(shè)運(yùn)送這車水果的費(fèi)用為(元)(不計(jì)返程費(fèi)用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運(yùn)送這車水果的費(fèi)用最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案