【題目】拋物線的焦點(diǎn)為F ,已知點(diǎn)A ,B 為拋物線上的兩個(gè)動點(diǎn),且滿足.過弦AB 的中點(diǎn)M 作拋物線準(zhǔn)線的垂線MN ,垂足為N,則 的最大值為__________.
【答案】1
【解析】
設(shè)|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=
(a+b)2﹣3ab,進(jìn)而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.
設(shè)|AF|=a,|BF|=b,
由拋物線定義,得AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab
配方得,|AB|2=(a+b)2﹣3ab,
又∵ab≤() 2,
∴(a+b)2﹣3ab≥(a+b)2﹣(a+b)2=(a+b)2
得到|AB|≥(a+b).
∴≤1,即的最大值為1.
故答案為:1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的標(biāo)準(zhǔn)方程為,該橢圓經(jīng)過點(diǎn),且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓長軸上一點(diǎn)作兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)過點(diǎn),離心率為.
(1)求橢圓C的方程;
(2)若斜率為的直線l與橢圓C交于A,B兩點(diǎn),試探究是否為定值?若是定值,則求出此定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動點(diǎn),點(diǎn)是在軸上的投影, 為上一點(diǎn),且.
(1)當(dāng)在圓上運(yùn)動時(shí),求點(diǎn)的軌跡的方程;
(2)求過點(diǎn)且斜率為的直線被所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個(gè)工藝品進(jìn)價(jià)為20元,每個(gè)的加工費(fèi)為n元,銷售單價(jià)為x元.根據(jù)市場調(diào)查,須有,,,同時(shí)日銷售量m(單位:個(gè))與成正比.當(dāng)每個(gè)工藝品的銷售單價(jià)為29元時(shí),日銷售量為1000個(gè).
(1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;
(2)當(dāng)每個(gè)工藝品的加工費(fèi)用為5元時(shí),要使該公司的日銷售利潤為100萬元,試確定銷售單價(jià)x的值.(提示:函數(shù)與的圖象在上有且只有一個(gè)公共點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列不等式的證法,再解決后面的問題:
已知,,求證:.
證明:構(gòu)造函數(shù),
即
.
因?yàn)閷σ磺?/span>,恒有,
所以,從而得.
(1)若,,請寫出上述結(jié)論的推廣式;
(2)參考上述證法,對你推廣的結(jié)論加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)若,求證:函數(shù)為奇函數(shù);
(2)若,判斷并證明函數(shù)的單調(diào)性;
(3)若,函數(shù)在區(qū)間上的取值范圍是,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A. 若為真命題,則為真命題 B. 若則恒成立
C. 命題“”的否定是“” D. 命題“若則”的逆否命題是“若,則”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com