20.已知$a=\int_0^π{2sin\frac{x}{2}}cos\frac{x}{2}dx$,則a=2.

分析 先化簡被積函數(shù),再根據(jù)定積分的計算法則計算即可.

解答 解:$a=\int_0^π{2sin\frac{x}{2}}cos\frac{x}{2}dx$=${∫}_{0}^{π}$sinxdx=-cosx|${\;}_{0}^{π}$=-(cosπ-cos0)=2,
故答案為:2

點評 本題考查了定積分的計算和三角函數(shù)的化簡,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某市高二年級學(xué)生進(jìn)行數(shù)學(xué)競賽,競賽分為初賽和決賽,規(guī)定成績在110分及110分以上的學(xué)生進(jìn)入決賽,110分以下的學(xué)生則被淘汰,現(xiàn)隨機(jī)抽取500名學(xué)生的初賽成績按[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]做成頻率副本直方圖,如圖所示:(假設(shè)成績在頻率分布直方圖中各段是均勻分布的)
(1)求這500名學(xué)生中進(jìn)入決賽的人數(shù),及進(jìn)入決賽學(xué)生的平均分(結(jié)果保留一位小數(shù));
(2)在全市進(jìn)入決賽的學(xué)生中,按照成績[110,130),[130,150]分層抽取6人組進(jìn)行決賽前培訓(xùn),在從6人中選取2人擔(dān)任組長,求組長中至少一名同學(xué)來自于高分組[130,150]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,既是偶函數(shù)又是(0,+∞)上的增函數(shù)的是( 。
A.y=x3B.y=2|x|C.y=-x2D.y=log3(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線l:x-y+2=0平行,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知Sn為數(shù)列{an}的前n項和,且Sn=$\frac{1}{2}$n2+$\frac{3}{2}$n-1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點F2,P分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點與右支上的一點,O為坐標(biāo)原點,若點M是PF2的中點,$|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,則該雙曲線的離心率為(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x∈Z|(x+1)(x-4)≤0},B={x|x≤a},若A∪B=B,則a的值可以是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(1-$\sqrt{x}$)6(1-$\root{3}{x}$)4的展開式中,x2的系數(shù)是(  )
A.-75B.-45C.45D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在極坐標(biāo)系中,直線ρcosθ+$\sqrt{3}$ρsinθ+1=0與圓ρ=2acosθ(a>0)相切,則a=1.

查看答案和解析>>

同步練習(xí)冊答案