7.(1)若$\overrightarrow{a}$=(1,0),$\overrightarrow$=(-1,1),$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow$.求|$\overrightarrow{c}$|;
(2)若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$).

分析 (1)根據(jù)向量坐標公式以及向量模長的公式進行計算即可.
(2)根據(jù)向量數(shù)量積的定義進行求解即可.

解答 解:(1)∵$\overrightarrow{a}$=(1,0),$\overrightarrow$=(-1,1),
∴$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow$=2(1,0)+(-1,1)=(1,1),
則|$\overrightarrow{c}$|=$\sqrt{2}$.
(2)若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,
則$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=|$\overrightarrow{a}$|2+$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|2+|$\overrightarrow{a}$|•|$\overrightarrow$|cos60°=4+2×$1×\frac{1}{2}$=4+1=5.

點評 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)向量數(shù)量積的坐標公式以及向量數(shù)量積的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)實數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y≥1}\\{2x-y≥-2}\\{2x-3y≤3}\end{array}}\right.$,則2x+y的最小值為$\frac{2}{3}$,若4x2+y2≥a恒成立,則實數(shù)a的最大值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.求y=$\sqrt{1+x}$+2$\sqrt{1-x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sinαcosα=$\frac{60}{169}$,π<α<$\frac{5π}{4}$,那么sinα-cosα=$\frac{7}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若z=kx+y的最大值為13,則實數(shù)k=$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線xsinθ+$\sqrt{3}$y+2=0的傾斜角的取值范圍是( 。
A.[${\frac{π}{6}$,$\frac{5π}{6}}$]B.[${\frac{π}{3}$,$\frac{2π}{3}}$]C.[0,$\frac{π}{6}}$]∪[${\frac{5π}{6}$,π]D.[0,$\frac{π}{3}}$]∪[${\frac{2π}{3}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的前n項和為Sn,S1=2,Sn=6,且Sn-Sn-2=3n(n≥3),則數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}\frac{3n}{2}+\frac{1}{2},n為奇數(shù)\\ \frac{3n}{2}+1,n為偶數(shù)\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a,b,c為三角形ABC三邊長,a≠1,b<c,若$\sqrt{3}$sinA+cosA=$\sqrt{2}$,且$\frac{1}{lo{g}_{c-b}a}$+$\frac{1}{lo{g}_{c+b}a}$=2,則B角大小為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在相同的條件下,對某種油菜籽進行發(fā)芽試驗,結(jié)果如表:
                    每批試驗菜籽數(shù)(n) 2 5 1070  130 310700 1500 2000 3000
 發(fā)芽菜籽數(shù)(m) 2 4 960  116 282 639 11391806 2715 
 發(fā)芽頻率($\frac{m}{n}$)         
(1)計算表中菜籽發(fā)芽的各個頻率;(保留三效有效數(shù)字)
(2)從這種油菜籽中任取一粒,它發(fā)芽的概率約是多少?(保留一位有效數(shù)字)

查看答案和解析>>

同步練習(xí)冊答案