已知tanα=3,求值:
(1)
5cos2α-3sin2α
1+sin2α

(2)
sin2α+sinα
2cos2α+2sin2α+cosα
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:利用三角函數(shù)間的關(guān)系式,將所求關(guān)系式中的“弦”化“切”,將tanα=3,代入即可求得(1)、(2)的值.
解答: 解:因?yàn)閠anα=3,
所以(1)
5cos2α-3sin2α
1+sin2α
=
5cos2α-3sin2α
cos2α+2sin2α
=
-3tan2α+5
2tan2α+1
=
-3×32+5
32+1
=-
22
19
;
(2)
sin2α+sinα
2cos2α+2sin2α+cosα
=
2sinαcosα+sinα
2cos2α+1-cos2α+cosα
=
2sinαcosα+sinα
cos2α+cos+1
=
2sinαcosα+sinα
2cos2α+cosα
=tanα=3.
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn)求值,將所求關(guān)系式中的“弦”化“切”是關(guān)鍵,考查等價(jià)轉(zhuǎn)化思想與運(yùn)算能力,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-a
x-2a
(a∈R)
(1)若a=0,解不等式|f(x)|>1;
(2)解關(guān)于x的不等式f(x)≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若S△ABC=
a2-(b-c)2
2

(1)求cosA的值;
(2)若S=10,求bc的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+
π
4
)=
3
5
,sin(α-
π
4
)=
4
5
,求sinα,cosα和tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn,且
Sn
1
4
與(an+1)2的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式
(2)若bn=
an
2n
,求{bn}的前n項(xiàng)和Tn
(3)在(2)的條件下,是否存在常數(shù)λ,使得數(shù)列{
Tn
an+2
}
為等比數(shù)列?若存在,求出λ,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一直角梯形ABCD的上,上下底分別為CD=
3
,AB=3
3
,高AD=2,求以腰BC所在直線為軸旋轉(zhuǎn)一周所形成的旋轉(zhuǎn)體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+lnx.
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
1
2
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問(wèn):在區(qū)間[1,10]上是否存在k(k<100)個(gè)正數(shù)x1,x2,x3…xk,使得f′(x1)+f′(x2)+f′(x3)+…f′(xk)≥2013成立?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x+2≥0且x-10≤0,命題q:1-m≤x≤1+m,m>0,若?p是?q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題:“若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m<n,m,n∈N*),則am+n=
b•n-a•m
n-m
”.現(xiàn)已知數(shù)列{bn}(bn>0,n∈N*)為等比數(shù)列,且bm=a,bn=b(m<n,m,n∈N*),若類比上述結(jié)論,則可得到bm+n=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案