20.已知函數(shù)f(x)=x2+4mx+n在區(qū)間[2,6]上是減函數(shù),求實數(shù)m的取值范圍(-∞,-3].

分析 根據(jù)二次函數(shù)的對稱軸與單調(diào)性的關(guān)系判斷出[2,6]在對稱軸左側(cè),列出不等式即可解出m的范圍.

解答 解:f(x)=x2+4mx+n=(x+2m)2+n-4m2
∴f(x)的圖象開口向上,對稱軸為x=-2m,
∴f(x)在(-∞,-2m]上單調(diào)遞減,在[2m,+∞)上單調(diào)遞增,
∵f(x)在區(qū)間[2,6]上是減函數(shù),
∴6≤-2m,解的m≤-3.
故答案為(-∞,-3].

點評 本題考查了二次函數(shù)的單調(diào)性,單調(diào)區(qū)間與對稱軸的關(guān)系,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.有5名同學站成一排照相,則甲與乙相鄰的不同排法種數(shù)有( 。
A.8B.12C.36D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.結(jié)合下面的算法:
第一步,輸入x
第二步,判斷x是否小于0,若是則輸出x+2,結(jié)束程序;否則執(zhí)行第三步
第三步,輸出x-1,結(jié)束程序;
當輸入的x的值分別是-1,0,1時,輸出的結(jié)果分別為1,-1,0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知在直角坐標系xOy中,直線l的參數(shù)方程為是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=4sinθ.
(1)判斷直線l與曲線C的位置關(guān)系;
(2)在曲線C上求一點P,使得它到直線l的距離最大,并求出最大距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知△ABC的三頂點是A(-1,-1),B(3,1),C(1,6).直線l平行于AB,交AC,BC分別于E,F(xiàn),且E、F分別是AC、BC的中點.求:
(1)直線AB邊上的高所在直線的方程.
(2)直線l所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=2+log3x(1≤x≤9),函數(shù)g(x)=f2(x)+f(x2),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知條件p:(1-x)(x+1)>0,條件q:-1<x≤1,則¬p是¬q的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).求曲線C的直角坐標方程,并指出曲線的類型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上的點到焦點的最大距離為3,離心率為$\frac{1}{2}$.
(1)求橢圓C的標準方程;
(2)設直線l:x-my+1=0與橢圓C交于不同兩點A,B,與x軸交于點D,且滿足$\overrightarrow{DA}$=λ$\overrightarrow{DB}$,若$-\frac{1}{2}$≤λ<$-\frac{1}{3}$,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案