【題目】如圖,某建筑工地搭建的腳手架局部類(lèi)似于一個(gè)3×2×3的長(zhǎng)方體框架,一個(gè)建筑工人欲從A處沿腳手架攀登至B處,則其最近的行走路線中不連續(xù)向上攀登的概率為(

A.B.C.D.

【答案】B

【解析】

將問(wèn)題抽象成向左三次,向前兩次,向上三次,計(jì)算出總的方法數(shù),然后利用插空法計(jì)算出最近的行走路線中不連續(xù)向上攀登的事件數(shù),最后根據(jù)古典概型概率計(jì)算公式,計(jì)算出所求概率.

的方向看,行走方向有三個(gè):左、前、上. 的最近的行走線路,需要向左三次,向前兩次,向上三次,共.所以從的最近的行走線路,總的方法數(shù)有.

不連續(xù)向上攀登的安排方法是:先將向左、向前的安排好,再對(duì)向上的方法進(jìn)行插空.故方法數(shù)有:.

所以最近的行走路線中不連續(xù)向上攀登的概率為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書(shū)、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四面體底面的中心為,的重心為.內(nèi)部一動(dòng)點(diǎn)(包括邊界),滿足,不共線且點(diǎn)到點(diǎn)的距離與到平面的距離相等.

1)證明:平面;

2)若,求四面體體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售某種商品,據(jù)統(tǒng)計(jì),該該商品每日的銷(xiāo)售量(單位:千克)與銷(xiāo)售價(jià)格(單位:元/千克,其中)滿足:當(dāng)時(shí),,為常數(shù));當(dāng)時(shí),,已知當(dāng)銷(xiāo)售價(jià)格為6/千克時(shí),每日售出該商品170千克.

1)求,的值,并確定關(guān)于的函數(shù)解析式;

2)若該商品的銷(xiāo)售成本為3/千克,試確定銷(xiāo)售價(jià)格的值,使店鋪每日銷(xiāo)售該商品所獲利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長(zhǎng)度為,只要誤差的絕對(duì)值不超過(guò)就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測(cè)其長(zhǎng)度,繪制條形統(tǒng)計(jì)圖如圖:

1)估計(jì)該批次產(chǎn)品長(zhǎng)度誤差絕對(duì)值的數(shù)學(xué)期望;

2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),南寧大力實(shí)施二產(chǎn)補(bǔ)短板、三產(chǎn)強(qiáng)優(yōu)勢(shì)、一產(chǎn)顯特色策略,著力發(fā)展實(shí)體經(jīng)濟(jì),工業(yè)取得突飛猛進(jìn)的發(fā)展.逐步形成了以電子信息、機(jī)械裝備、食品制糖、鋁深加工等為主的4大支柱產(chǎn)業(yè).廣西洋浦南華糖業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到一組銷(xiāo)售數(shù)據(jù),如下表所示,已知.

1)求出q的值;

2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷(xiāo)量y()關(guān)于試銷(xiāo)單價(jià)x()的線性回歸方程

3)用表示用(2)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷(xiāo)量的估計(jì)值.當(dāng)銷(xiāo)售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷(xiāo)售數(shù)據(jù)稱(chēng)為一個(gè)好數(shù)據(jù)”.現(xiàn)從6個(gè)銷(xiāo)售數(shù)據(jù)中任取3個(gè),求好數(shù)據(jù)個(gè)數(shù)的數(shù)學(xué)期望.

(參考公式:線性回歸方程中的最小二乘估計(jì)分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的展開(kāi)式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)數(shù)系數(shù)相等,且展開(kāi)式的各項(xiàng)系數(shù)之和為1024,則下列說(shuō)法正確的是(

A.展開(kāi)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為256

B.展開(kāi)式中第6項(xiàng)的系數(shù)最大

C.展開(kāi)式中存在常數(shù)項(xiàng)

D.展開(kāi)式中含項(xiàng)的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)把該組織的成員按年齡分成組第,第,第,第,第,得到的頻率分布直方圖如圖所示,已知第組有人.

(1)求該組織的人數(shù);

(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動(dòng),應(yīng)從第組各抽取多少名志愿者?

(3)在(2)的條件下,該組織決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組至少有名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是曲線上的動(dòng)點(diǎn),且點(diǎn)的距離比它到x軸的距離大1.直線與直線的交點(diǎn)為.

1)求曲線的軌跡方程;

2)已知是曲線上不同的兩點(diǎn),線段的垂直垂直平分線交曲線兩點(diǎn),若的中點(diǎn)為,則是否存在點(diǎn),使得四點(diǎn)內(nèi)接于以點(diǎn)為圓心的圓上;若存在,求出點(diǎn)坐標(biāo)以及圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案