15.在線性回歸模型中,分別選擇了4個不同的模型,它們的相關(guān)指數(shù)R2依次為0.36、0.95、0.74、0.81,其中回歸效果最好的模型的相關(guān)指數(shù)R2為( 。
A.0.95B.0.81C.0.74D.0.36

分析 根據(jù)兩個變量y與x的回歸模型中,它們的相關(guān)指數(shù)R2越接近于1,這個模型的擬合效果就越好,由此選出選項中的答案.

解答 解:兩個變量y與x的回歸模型中,它們的相關(guān)指數(shù)R2越接近于1,
這個模型的擬合效果就越好,
在所給的四個選項中0.95是相關(guān)指數(shù)最大的值,
∴其擬合效果也最好.
故選:A.

點評 本題考查了相關(guān)指數(shù),這里不用求相關(guān)指數(shù),而是根據(jù)所給的相關(guān)指數(shù)判斷模型的擬合效果,解題的關(guān)鍵是理解相關(guān)指數(shù)越大擬合效果越好.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知全集U={x|x>0},M={x|x>1},則∁UM=( 。
A.{x|x≤1}B.{x|0<x≤1}C.{x|x≥0}D.{x|x≤0或x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知a=$\frac{{\sqrt{2}+1}}{2}$,函數(shù)f(x)=logax,若正實數(shù)m,n滿足f(m)>f(n),則m,n的大小關(guān)系是m>n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(shè)等比數(shù)列{an}的首項a1=1,且4a1,2a2,a3成等差數(shù)列,則數(shù)列{an}的前10項和S10=1023.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)Sn是等差數(shù)列{an}的前n項和,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,則$\frac{{S}_{6}}{{S}_{12}}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,在Rt△ABC中,E為BC邊上一點,且$\overrightarrow{EB}$=$3\overrightarrow{CE}$,若向量$\overrightarrow{AE}$利用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示,則$\overrightarrow{AE}$=$\frac{1}{4}\overrightarrow{AB}$$+\frac{3}{4}\overrightarrow{AC}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.“函數(shù)f(x)=$\left\{\begin{array}{l}(a-1)x+2,x>2\\{a^x},x≤2\end{array}$在R上是單調(diào)遞增函數(shù)”是“函數(shù)g(x)=log2(x2-ax+1)在[1,+∞)上是單調(diào)遞增函數(shù)”的既不充分也不必要條件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若曲線ρ2-2aρcosθ-2aρsinθ+2a2-4=0上有且僅有兩個點到原點的距離為2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{12}$對稱,且當x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),x1≠x2時,f(x1)=f(x2),則f(x1+x2)等于(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

同步練習冊答案