A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
分析 由正弦函數(shù)的對(duì)稱性可得sin(2×$\frac{π}{12}$+φ)=±1,結(jié)合范圍|φ|<$\frac{π}{12}$,即可解得φ的值,得到函數(shù)f(x)解析式,由題意利用正弦函數(shù)的性質(zhì)可得x1+x2=-$\frac{11π}{6}$代入函數(shù)解析式利用誘導(dǎo)公式即可計(jì)算求值.
解答 解:∵sin(2×$\frac{π}{12}$+φ)=±1,
∴φ=kπ+$\frac{π}{3}$,k∈Z,
又∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$),
當(dāng)x∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),2x+$\frac{π}{3}$∈(-$\frac{5π}{2}$,-π),區(qū)間內(nèi)有唯一對(duì)稱軸x=-$\frac{11π}{12}$,
∵x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),x1≠x2時(shí),f(x1)=f(x2),
∴x1,x2關(guān)于x=-$\frac{11π}{12}$對(duì)稱,即x1+x2=-$\frac{11}{6}$π,
∴f(x1+x2)=$\frac{\sqrt{6}}{2}$.
故選C.
點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性的綜合運(yùn)用,正弦函數(shù)的性質(zhì),函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.95 | B. | 0.81 | C. | 0.74 | D. | 0.36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1,3,6,10,15,21… | B. | 1,2,4,8,16,32,… | ||
C. | 1,$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{12}$,$\frac{1}{20}$,… | D. | -3,0,3,6,9,12… |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com