9.若復(fù)數(shù)$\frac{a-3i}{1+i}$ (a∈R,i 為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a的值為3.

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部為0且虛部不為0求得a值.

解答 解:∵$\frac{a-3i}{1+i}$=$\frac{(a-3i)(1-i)}{(1+i)(1-i)}$=$\frac{(a-3)-(a+3)i}{2}$=$\frac{a-3}{2}-\frac{a+3}{2}i$是純虛數(shù),
∴$\left\{\begin{array}{l}{\frac{a-3}{2}=0}\\{-\frac{a+3}{2}≠0}\end{array}\right.$,解得:a=3.
故答案為:3.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-6≤0}\\{x-1≥0}\end{array}\right.$,則$\frac{y}{x}$的取值范圍是( 。
A.[2,5]B.(-∞,2]∪[5,+∞)C.(-∞,3]∪[5,+∞)D.[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=$\frac{x+2}{x+1}$的值域?yàn)閧y|y≠1},函數(shù)g(x)=$\frac{\sqrt{x}+2}{\sqrt{x}+1}$的值域?yàn)椋?,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|y=$\sqrt{-{x}^{2}+6x-9}$},B={x|3x=4},則(  )
A.A∪B=AB.(∁RA)∩B=∅
C.若α∈A,則f(x)=xα 為增函數(shù)D.若α∈B,3α+3=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{\sqrt{x}-3}$,x∈[4,9)∪(9,16]的值域?yàn)椋?∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)x,y∈R,i為虛數(shù)單位,且$\frac{x}{1+i}$+$\frac{y}{1+2i}$=$\frac{5}{1+3i}$,則x+y=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知直線ln:nx+2ny=4n+1(n=1,2,…)與x軸、y軸的交點(diǎn)分別為An、Bn,O為坐標(biāo)原點(diǎn),設(shè)△OAnBn的面積為Sn(n=1,2,…),則$\lim_{n→∞}{S_n}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(x)是R上的奇函數(shù)且f(x+2)=-$\frac{1}{f(x)}$,當(dāng)x∈(0,1)時(shí),f(x)=2x,求f(-$\frac{9}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.△ABC的三內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a,b,c,若S△ABC=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,則角A的大小為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案