18.已知f(x)是R上的奇函數(shù)且f(x+2)=-$\frac{1}{f(x)}$,當(dāng)x∈(0,1)時(shí),f(x)=2x,求f(-$\frac{9}{2}$)的值.

分析 求出函數(shù)的周期,利用已知條件化簡(jiǎn)求解函數(shù)的值即可.

解答 解:f(x)是R上的奇函數(shù)且f(x+2)=-$\frac{1}{f(x)}$,
可得f(x+4)=-$\frac{1}{f(x+2)}$=$\frac{1}{\frac{1}{f(x)}}$=f(x),所以函數(shù)的周期為:4.
當(dāng)x∈(0,1)時(shí),f(x)=2x,
則f(-$\frac{9}{2}$)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-${2}^{\frac{1}{2}}$=-$\sqrt{2}$.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性,周期性的應(yīng)用,抽象函數(shù)以及函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知菱形ABCD,∠BAD=120°,AB=2,E為邊BC的中點(diǎn),則$\overrightarrow{AC}$•$\overrightarrow{AE}$等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若復(fù)數(shù)$\frac{a-3i}{1+i}$ (a∈R,i 為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)于任意的n∈N*,都有Sn=2an-3n(n∈N*).
(1)求數(shù)列{an}的首項(xiàng)a1及數(shù)列的遞推關(guān)系式an+1=f(an);
(2)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值,并求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在三項(xiàng)as,ap,ar(s<p<r),它們組成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:向量$\overrightarrow{a}$=(1,2)與向量$\overrightarrow$=(2,k)的夾角為銳角的充要條件是k>-1;命題q:函數(shù)f(x)=$\left\{\begin{array}{l}sin(x+\frac{π}{3}),x≤0\\ cos(x+\frac{π}{6}),x>0\end{array}$是偶函數(shù),下列是真命題的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=90°,且PA⊥AB,PD⊥CD.
(1)判斷CD是否和平面PAD垂直;
(2)證明:面PAD⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={x|x2-x-2≤0},B={y|y=2x},則A∩B=(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知log23=a,log37=b,用a,b表示log2442.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正四面體的棱長(zhǎng)$\sqrt{2}$,則其外接球的表面積為( 。
A.B.12πC.$\frac{\sqrt{3}}{2}$πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案