【題目】現(xiàn)有編號(hào)為1,2,3,…,100的100把鎖,利用中國剩余定理的原理設(shè)置開鎖密碼,規(guī)則為:將鎖的編號(hào)依次除以3,5,7所得的三個(gè)余數(shù)作為該鎖的開鎖密碼,這樣,每把鎖都有一個(gè)三位數(shù)字的開鎖密碼.例如,編號(hào)為52的鎖所對(duì)應(yīng)的開鎖密碼是123,開鎖密碼為232所對(duì)應(yīng)的鎖的編號(hào)是23.若一把鎖的開鎖密碼為203,則這把鎖的編號(hào)是__________

【答案】80

【解析】

本道題一一列舉,把滿足條件的編號(hào)一一排除,即可。

該數(shù)可以表示為故該數(shù)一定是5的倍數(shù),所以5的倍數(shù)有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,該數(shù)滿足減去3能夠被7整除,只有10,45,80,而同時(shí)要滿足減去23整除,所以只有80.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時(shí),證明:;

(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)是函數(shù)的圖象的一個(gè)對(duì)稱中心,且點(diǎn)到該圖象的對(duì)稱軸的距離的最小值為.

的最小正周期是;

的值域?yàn)?/span>;

的初相

上單調(diào)遞增.

以上說法正確的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個(gè)命題:

(1)“若,則互為倒數(shù)”的逆命題;

(2)“面積相等的三角形全等”的否命題;

(3)“若,則有實(shí)數(shù)解”的逆否命題;

(4)“若,則”的逆否命題.

其中真命題為( )

A. (1)(2) B. (2)(3) C. (4) D. (1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)大型噴水池的中央有一個(gè)強(qiáng)力噴水柱,為了測(cè)量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點(diǎn)A測(cè)得水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100 m到達(dá)點(diǎn)B,在B點(diǎn)測(cè)得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞網(wǎng)點(diǎn)收取快遞費(fèi)用的標(biāo)準(zhǔn)是重量不超過的包裹收費(fèi)10元,重量超過的包裹,除收費(fèi)10元之外,超過的部分,每超出(不足,按計(jì)算)需要再收費(fèi)5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

1)求這60天每天包裹數(shù)量的平均數(shù)和中位數(shù);

2)該快遞網(wǎng)點(diǎn)負(fù)責(zé)人從收取的每件快遞的費(fèi)用中抽取5元作為工作人員的工資和網(wǎng)點(diǎn)的利潤,剩余的作為其他費(fèi)用.已知該網(wǎng)點(diǎn)有工作人員3人,每人每天工資100元,以樣本估計(jì)總體,試估計(jì)該網(wǎng)點(diǎn)每天的利潤有多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是假命題的是( )

A. ,函數(shù)都不是偶函數(shù)

B. ,

C. ,使

D. 若向量,則方向上的投影為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖像在處的切線方程與的單調(diào)區(qū)間;

(2)設(shè)是函數(shù)的導(dǎo)函數(shù),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對(duì)數(shù)學(xué)分析做出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果,設(shè)函數(shù)上的導(dǎo)函數(shù)為,上的導(dǎo)函數(shù)為,若在恒成立,則稱函數(shù)上為“凸函數(shù)”,已知上為“凸函數(shù)”,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案