A. | [e+1,+∞) | B. | (e+1,+∞) | C. | (e-1,+∞) | D. | [e-1,+∞) |
分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-a(x<1)}\\{ln(x+a)(x≥1)}\end{array}\right.$,在R上是增函數(shù),則e-a≤ln(1+a),解不等式可得實數(shù)a的取值范圍.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-a(x<1)}\\{ln(x+a)(x≥1)}\end{array}\right.$,其中a>-1在R上是增函數(shù),
∴e-a≤ln(1+a),即ln(1+a)-e+a≥0,
令g(a)=ln(1+a)-e+a,則g′(a)=$\frac{1}{1+a}$+1,
當(dāng)a>-1時,g′(a)>0恒成立,
又由g(e-1)=0,
故ln(1+a)-e+a≥0可化為:a≥e-1,
故實數(shù)a的取值范圍是[e-1,+∞),
故選:D
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,導(dǎo)數(shù)法求函數(shù)的最值,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline x$ | $\overline y$ | $\overline w$ | $\sum_{i=1}^{10}{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^{10}{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^{10}{({x_i}-\overline x)}({y_i}-\overline y)$ | $\sum_{i=1}^{10}{({w_i}-\overline w)}({y_i}-\overline y)$ |
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 30 | C. | 16 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向上平移1個單位 | B. | 向下平移1個單位 | C. | 向左平移1個單位 | D. | 向右平移1個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com