12.$\frac{{2cos{7^0}}}{{cos{{23}^0}}}-tan{23^0}$=$\sqrt{3}$.

分析 由23°=30°-7°,利用同角三角函數(shù)基本關(guān)系式,兩角和與差的正弦函數(shù),余弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡求值.

解答 解:$\frac{{2cos{7^0}}}{{cos{{23}^0}}}-tan{23^0}$=$\frac{2cos7°-sin23°}{cos23°}$=$\frac{2cos7°-sin(30°-7°)}{cos23°}$
=$\frac{2cos7°-(\frac{1}{2}cos7°-\frac{\sqrt{3}}{2}sin7°)}{cos23°}$
=$\frac{\frac{3}{2}cos7°+\frac{\sqrt{3}}{2}sin7°}{cos23°}$
=$\frac{\sqrt{3}cos(30°-7°)}{cos23°}$
=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和與差的正弦函數(shù),余弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且asinAsinB+bcos2A=$\frac{5}{3}$a.
(I)求$\frac{a}$;
(Ⅱ)若c2=a2+$\frac{8}{5}\;{b^2}$,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)滿足:(1)焦點為F1(-5,0),F(xiàn)2(5,0);(2)離心率為$\frac{5}{3}$,且求得雙曲線C的方程為f(x,y)=0.若去掉條件(2),另加一個條件求得雙曲線C的方程仍為f(x,y)=0,則下列四個條件中,符合添加的條件共有( 。
①雙曲線C上任意一點P都滿足||PF1|-|PF2||=6;
②雙曲線C的虛軸長為4;
③雙曲線C的一個頂點與拋物線y2=6x的焦點重合;
④雙曲線C的漸進線方程為4x±3y=0.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=x•ex-m在R上存在兩個不同的零點,則m的取值范圍是(  )
A.$-\frac{1}{e}<m<0$B.$m>-\frac{1}{e}$C.m>eD.-e<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)由下表給出,則f(2)=3.
x123
f(x)231

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}m\sqrt{1-{x^2}},x∈({-1,1}]\\ 1-|{x-2}|,x∈({1,3}]\end{array}\right.$,其中m>0,且函數(shù)f(x)=f(x+4),若方程3f(x)-x=0恰有5個根,則實數(shù)m的取值范圍是( 。
A.$(\frac{{\sqrt{15}}}{3},\sqrt{7})$B.$(\frac{{\sqrt{15}}}{3},\frac{8}{3})$C.$(\frac{4}{3},\sqrt{7})$D.$(\frac{4}{3},\frac{8}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題中假命題有( 。
①若向量$\overrightarrow{a}$,$\overrightarrow$所在的直線為異面直線,則向量$\overrightarrow{a}$,$\overrightarrow$一定不共面;
②?θ∈R,使sinθcosθ=$\frac{3}{5}$成立;
③?a∈R,都有直線ax+2y+a-2=0恒過定點;
④命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0”.
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計算下列各式的值:
(1)${({\frac{9}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({\frac{27}{8}})^{-\frac{2}{3}}}+{({\frac{3}{2}})^{-2}}$
(2)${log_3}\sqrt{3}+lg25+lg4+{7^{{{log}_7}2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x,y)=(x-y)2+($\frac{x}{4}$+$\frac{1}{y}$)2(y≠0),則f(x,y)的最小值是$\frac{16}{17}$.

查看答案和解析>>

同步練習(xí)冊答案