17.已知函數(shù)$f(x)=\left\{\begin{array}{l}m\sqrt{1-{x^2}},x∈({-1,1}]\\ 1-|{x-2}|,x∈({1,3}]\end{array}\right.$,其中m>0,且函數(shù)f(x)=f(x+4),若方程3f(x)-x=0恰有5個根,則實數(shù)m的取值范圍是( 。
A.$(\frac{{\sqrt{15}}}{3},\sqrt{7})$B.$(\frac{{\sqrt{15}}}{3},\frac{8}{3})$C.$(\frac{4}{3},\sqrt{7})$D.$(\frac{4}{3},\frac{8}{3})$

分析 根據(jù)對函數(shù)的解析式進行變形后發(fā)現(xiàn)當(dāng)x∈(-1,1],[3,5],[7,9]上時,f(x)的圖象為半個橢圓.根據(jù)圖象推斷要使方程恰有5個實數(shù)解,則需直線y=$\frac{x}{3}$與第二個橢圓相交,而與第三個橢圓不公共點.把直線分別代入橢圓方程,根據(jù)△可求得m的范圍.

解答 解:∵當(dāng)x∈(-1,1]時,將函數(shù)化為方程x2+$\frac{{y}^{2}}{{m}^{2}}$=1(y≥0),
∴實質(zhì)上為一個半橢圓,其圖象如圖所示,
∵函數(shù)f(x)=f(x+4),∴函數(shù)的周期是4,
同時在坐標(biāo)系中作出當(dāng)x∈(1,3]得圖象,再根據(jù)周期性作出函數(shù)其它部分的圖象,
若方程3f(x)-x=0恰有5個根,則等價為f(x)=$\frac{x}{3}$恰有5個根,
由圖易知直線 y=$\frac{x}{3}$與第二個橢圓(x-4)2+$\frac{{y}^{2}}{{m}^{2}}$=1(y≥0)相交,
而與第三個半橢圓(x-8)2+$\frac{{y}^{2}}{{m}^{2}}$=1 (y≥0)無公共點時,方程恰有5個實數(shù)解,
將 y=$\frac{x}{3}$代入(x-4)2+$\frac{{y}^{2}}{{m}^{2}}$=1 (y≥0)得,(9m2+1)x2-72m2x+135m2=0,令t=9m2(t>0),
則(t+1)x2-8tx+15t=0,由△=(8t)2-4×15t (t+1)>0,
得t>15,由9m2>15,且m>0得 m$>\frac{\sqrt{15}}{3}$,
同樣由 y=$\frac{x}{3}$與第三個橢圓(x-8)2+$\frac{{y}^{2}}{{m}^{2}}$=1 (y≥0)由△<0可計算得 m<$\sqrt{7}$,
綜上可知m∈($\frac{\sqrt{15}}{3}$,$\sqrt{7}$),
故選:A.

點評 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)條件轉(zhuǎn)化為兩個函數(shù)的交點問題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強,有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.
從圖中任選5個序號,寫出其對應(yīng)定理或結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x∈R,cosx≥a,下列a的取值能使“¬p”是真命題的是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=log4(4x+1)+mx為偶函數(shù),g(x)=$\frac{{{4^x}-n}}{2^x}$為奇函數(shù).
(1)求mn的值;
(2)設(shè)h(x)=f(x)+$\frac{x}{2}$,若g(x)>h(log4(2a+1))對任意x≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.$\frac{{2cos{7^0}}}{{cos{{23}^0}}}-tan{23^0}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC內(nèi)隨機取一點P,使$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則x≤$\frac{2}{3}$在的條件下y≥$\frac{1}{3}$的概率( 。
A.$\frac{7}{9}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知a為實數(shù),f(x)=x2(x-a),且f′(-1)=0,則a=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的振幅、周期、頻率和初相.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知不等式2x-1>m(x2-1),若對于m∈[-2,2]不等式恒成立,則實數(shù)x的取值范圍為($\frac{\sqrt{7}-1}{2}$,$\frac{1+\sqrt{3}}{2}$).

查看答案和解析>>

同步練習(xí)冊答案