4.在△ABC中,A,B,C是三角形的三內(nèi)角.設(shè)tan$\frac{A+B}{2}+tan\frac{C}{2}=\frac{{4\sqrt{3}}}{3}$.
(1)若sinB•sinC=cos2$\frac{A}{2}$,求A,B,C的值;
(2)若C為銳角,求sinA+sinB的取值范圍.

分析 (1)利用三角形內(nèi)角和定理與誘導(dǎo)公式可得$tan\frac{A+B}{2}$=$\frac{1}{tan\frac{C}{2}}$.由$tan\frac{A+B}{2}+tan\frac{C}{2}=\frac{{4\sqrt{3}}}{3}$,解得tan$\frac{C}{2}$.可得C.由$sinB.sinC={cos}^2\frac{A}{2}$,利用倍角公式與和差公式可得:cos(B-C)=1,即可得出.
(2)由(1)及已知得,C=$\frac{π}{3}$,A+B=$\frac{2π}{3}$.再利用誘導(dǎo)公式與和差公式、三角函數(shù)的單調(diào)性即可得出.

解答 解:(1)∵A+B+C=π,∴$tan\frac{A+B}{2}$=$\frac{1}{tan\frac{C}{2}}$.
由$tan\frac{A+B}{2}+tan\frac{C}{2}=\frac{{4\sqrt{3}}}{3}$,可得:$\frac{1}{tan\frac{C}{2}}$+$tan\frac{C}{2}$=$\frac{4\sqrt{3}}{3}$,
解得tan$\frac{C}{2}$=$\sqrt{3}$或$\frac{\sqrt{3}}{3}$.
又C∈(0,π).
∴C=$\frac{π}{3}$或$\frac{2π}{3}$.
由于$sinB.sinC={cos}^2\frac{A}{2}$,
∴sinBsinC=$\frac{1+cosA}{2}$=$\frac{1-cos(B+C)}{2}$,
∴2sinBsinC=1-(cosBcosC-sinBsinC),
∴cos(B-C)=1,
∴B=C.
∴$B=C=\frac{π}{3}$,而B(niǎo)=C=$\frac{2π}{3}$舍去.
∴A=C=$\frac{π}{3}$.
(2)由(1)及已知得,C=$\frac{π}{3}$,
∴A+B=$\frac{2π}{3}$.
∴sinA+sinB=sinA+sin$(\frac{2π}{3}-A)$
=sinA+$\frac{\sqrt{3}}{2}cosA+\frac{1}{2}sinA$
=$\frac{3}{2}sinA+\frac{\sqrt{3}}{2}cosA$
=$\sqrt{3}sin(A+\frac{π}{6})$,
∵$A∈(0,\frac{2π}{3})$,
∴$(A+\frac{π}{6})$∈$(\frac{π}{6},\frac{5π}{6})$.
∴$sin(A+\frac{π}{6})$∈$(\frac{1}{2},1]$.
故sinA+sinB的取值范圍是$(\frac{\sqrt{3}}{2},\sqrt{3}]$.

點(diǎn)評(píng) 本題考查了三角形內(nèi)角和定理、誘導(dǎo)公式、倍角公式、和差公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=2sin2x+sinx•cosx+cos2x,x∈R. 求:
(1)f($\frac{π}{12}$)的值;
(2)函數(shù)f(x)的最小值及相應(yīng)x值;
(3)函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知x1,x2,…x9組成公差為1的等差數(shù)列,隨機(jī)變量X所有取值為x1,x2,…x9,且等可能地取每一個(gè)值,則X的方差為(  )
A.$\frac{20}{3}$B.$\frac{10}{3}$C.60D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,在梯形ABCD中,AD∥BC,$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\vec b$,$\overrightarrow{OC}$=$\overrightarrow c$,$\overrightarrow{OD}$=$\overrightarrow d$,且E、F分別為AB、CD的中點(diǎn),則 ( 。
A.$\overrightarrow{EF}$=$\frac{1}{2}(\overrightarrow a+\overrightarrow b+\overrightarrow c+\overrightarrow d)$B.$\overrightarrow{EF}$=$\frac{1}{2}(\overrightarrow a-\overrightarrow b+\overrightarrow c-\overrightarrow d)$C.$\overrightarrow{EF}$=$\frac{1}{2}(-\overrightarrow a-\overrightarrow b+\overrightarrow c+\overrightarrow d)$D.$\overrightarrow{EF}$=$\frac{1}{2}(\overrightarrow a+\overrightarrow b-\overrightarrow c-\overrightarrow d)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知全集S={1,2,3,4,5},且A∩B={2},(∁SA)∩B={1,4},則B={1,2,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在等差數(shù)列{an}中,Sn是其前n項(xiàng)和,a1=-2010,$\frac{{{S_{2008}}}}{2008}-\frac{{{S_{2006}}}}{2006}$=2,則S2010=( 。
A.-2009B.2009C.-2010D.2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若θ是兩條異面直線所成的角,則( 。
A.θ∈(0,π]B.$θ∈(0,\frac{π}{2}]$C.$θ∈[0,\frac{π}{2}]$D.$θ∈(0,\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$f(x)={log_{\frac{1}{3}}}({9-{x^2}})$的定義域?yàn)椋?3,3)值域?yàn)閇-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$)(n∈N*)均在函數(shù)y=3x-2的圖象上,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案