2.命題“對(duì)任意實(shí)數(shù)x,x>0”的否定是?x∈R,x≤0.

分析 根據(jù)全稱命題的否定是特稱命題即可得到結(jié)論.

解答 解:根據(jù)全稱命題的否定是特稱命題得到命題的否定是:?x∈R,x≤0.
故答案為:?x∈R,x≤0.

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)y=f(x)的定義域?yàn)镽,則“f(0)=0”是“函數(shù)f(x)為奇函數(shù)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)y=log${\;}_{\frac{1}{2}}$x,x∈[1,+∞),則y的取值范圍(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.化簡(jiǎn)$\frac{\sqrt{1-2sin375°cos(-345°)}}{\sqrt{tan225°-co{s}^{2}}15°+cos165°}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.化簡(jiǎn):$\frac{cos(\frac{5}{2}π-α)cos(3π-α)tan(-α-π)}{tan(4π-α)sin(5π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求下列函數(shù)的最小正周期及最大值、最小值:
(1)y=$\frac{1}{2}$sin3x一1;(2)y=(sinx+cosx)2;(3)y=2sinx-5cosx+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.判斷下列函數(shù)的奇偶性:
(1)f(x)=-2cos3x.
(2)f(x)=xsin(x+π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosa\\ y=\sqrt{3}sina\end{array}$(a為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=2\sqrt{2}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程.
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=4,
C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B-PAC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案