【題目】甲、乙兩人各射擊1 次擊中目標(biāo)的概率分別三分之二和四分之三,假設(shè)兩人射擊是否擊中目標(biāo)相互之間沒(méi)有影響,每次射擊是否擊中目標(biāo)相互之間也沒(méi)有影響.
(1)求甲射擊4次,至少有1次未擊中目標(biāo)的概率.
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,問(wèn):乙恰好射擊5次后被終止射擊的概率是多少?
【答案】(1)
(2)
(3)
【解析】
(1)根據(jù)對(duì)立事件的概率公式進(jìn)行求解即可;
(2)根據(jù)積事件的概率公式,結(jié)合次獨(dú)立重復(fù)試驗(yàn)中某事件恰好發(fā)生次的概率公式進(jìn)行求解即可;
(3)乙恰好射擊5次后被終止射擊,說(shuō)明最后兩次沒(méi)有射中,前二次至多有一次沒(méi)有射中,然后根據(jù)獨(dú)立試驗(yàn)同時(shí)發(fā)生的概率公式進(jìn)行求解即可.
解:(1)記“甲連續(xù)射擊4次,至少1次未擊中目標(biāo)”為事件,
由題意知,每人各次射擊是否擊中目標(biāo)相互之間沒(méi)有影響,
所以射擊4次,相當(dāng)于4次獨(dú)立重復(fù)試驗(yàn),
故,
即甲射擊4次,至少1次未擊中目標(biāo)的概率為;
(2)記“甲射擊4次,恰好擊中目標(biāo)2次”為事件,
記“乙射擊4次,恰好擊中目標(biāo)3次”為事件,
記“甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次”為事件,則
;
;
.
又事件,相互獨(dú)立,
故,
即兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率為.
(3)記“乙恰好射擊5次后,被中止射擊”為事件,
“乙第次射擊為擊中”為事件,,
則且.
.
即乙恰好射擊5次后,被中止射擊的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)判斷函數(shù)是否存在公切線,如果不存在,請(qǐng)說(shuō)明理由,如果存在請(qǐng)指出公切線的條數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的偶函數(shù),且時(shí),.
(1)求,;
(2)求函數(shù)的解析式;
(3)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】7人排成一排,按以下要求分別有多少種排法?
(1)甲、乙兩人排在一起;
(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有兩人排在一起.(答題要求:先列式,后計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查甲、乙兩校高三年級(jí)學(xué)生某次聯(lián)考數(shù)學(xué)成績(jī)情況,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣從這兩個(gè)學(xué)校高三年級(jí)學(xué)生中各抽取30名,以他們的數(shù)學(xué)成績(jī)(百分制)作為樣本,樣本數(shù)據(jù)如下.
(1)若甲校高三年級(jí)每位學(xué)生被抽到的概率為0.05,求甲校高三年級(jí)學(xué)生總?cè)藬?shù),并估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績(jī)的及格率(60分及60分以上為及格);
(2)設(shè)甲、乙兩校高三年級(jí)學(xué)生這次聯(lián)考數(shù)學(xué)平均成績(jī)分別為,,估計(jì)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:x2-(3+a)x+3a<0,其中a<3;q:x2+4x-5>0.
(1)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動(dòng)點(diǎn),將線段OM繞O點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
討論函數(shù)的單調(diào)性;
若關(guān)于x的方程有唯一解,且,,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次水下考古活動(dòng)中,需要潛水員潛入水深為30米的水底進(jìn)行作業(yè).其用氧量包含3個(gè)方面:①下潛時(shí),平均速度為(米/單位時(shí)間),單位時(shí)間內(nèi)用氧量為(為正常數(shù));②在水底作業(yè)需5個(gè)單位時(shí)間,每個(gè)單位時(shí)間用氧量為0.4;③返回水面時(shí),平均速度為(米/單位時(shí)間), 單位時(shí)間用氧量為0.2.記該潛水員在此次考古活動(dòng)中,總用氧量為.
(1)將表示為的函數(shù);
(2)設(shè)0<≤5,試確定下潛速度,使總的用氧量最少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com