已知F1、F2為雙曲線C:x2-y2=1的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,∠F1PF2=60°,則P到y(tǒng)軸的距離為( 。
A、
3
2
B、
6
2
C、
10
2
D、
6
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)|PF1|=m,|PF2|=n,不妨設(shè)m>n,化簡求得mn=4,利用三角形面積相等求解.
解答: 解:設(shè)|PF1|=m,|PF2|=n,不妨設(shè)m>n,
可知a=1,b=1,c=
2
,
根據(jù)雙曲線定義,
m-n=2a,即m2+n2-2mn=4,(1)
在△PF1F2中,根據(jù)余弦定理,
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos60°,
即m2+n2-mn=8,(2)
(2)-(1)得,mn=4,
解得m=
5
+1
,n=
5
-1,
設(shè)P到x軸的距離為h,則
1
2
mnsin60°=
1
2
×2
2
h
,解得h=
6
2
,
設(shè)P到y(tǒng)軸的距離為g,則g=
m2-h2
-
2
=
(
5
+1)2-(
6
2
)2
=
10
2
;
故選:C.
點(diǎn)評(píng):本題考查了雙曲線的性質(zhì),結(jié)合余弦定理求出焦半徑的長度,利用三角形的面積個(gè)數(shù)以及勾股定理求P到y(tǒng)軸距離,計(jì)算要準(zhǔn)確,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=0,an+1-Sn=n.
(Ⅰ) 求證:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,b1=1,點(diǎn)(Tn+1,Tn)在直線
x
n+1
-
y
n
=
1
2
上,在(Ⅰ)的條件下,若不等式
b1
a1+1
+
b2
a2+1
+…+
bn
an+1
t2-3t
對(duì)于n∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B、C是兩個(gè)定點(diǎn),|BC|=6,且△ABC的周長為16.
(1)求三角形頂點(diǎn)A的軌跡S的方程;
(2)設(shè)過點(diǎn)B與BC垂直的直線l交軌跡S于D、E兩點(diǎn),求線段DE的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,CP,CA,CB兩兩垂直且相等,過PA的中點(diǎn)D作平面α∥BC,且α分別交PB,PC于M,N,交AB,AC的延長線于E,F(xiàn).
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若AB=2BE,求二面角P-DM-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,CC1=2AB=2BC=2,D是CC1中點(diǎn)
(1)求證:B1D⊥平面ABD;
(2)求:平面AB1D與側(cè)面BB1C1C所成銳角的余弦的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(1,0),
OB
=(0,1),
OM
=(t,t)(t∈R),O是坐標(biāo)原點(diǎn).
(Ⅰ)若點(diǎn)A,B,M三點(diǎn)共線,求t的值;
(Ⅱ)當(dāng)t取何值時(shí),
MA
MB
取到最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+ax2+x在(0,+∞)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,
3
)∪(
3
,+∞)
B、(-
3
,
3
C、(
3
,+∞)
D、(-∞,-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(2x+φ),(A>0,|φ|<
π
2
)的部分圖象過點(diǎn)(0,2),如圖所示,則函數(shù)f(
π
2
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記max{a,b}為兩數(shù)a,b的最大值,當(dāng)正數(shù)x,y變化時(shí),t=max{
1
x
2
y
,4x2+y2}的最小值為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案