17.若用P表示已知條件、已有的定義、定理、公理等,Q表示所要證明的結(jié)論,則如圖框圖表示的證明方法是( 。
A.合情推理B.綜合法C.分析法D.反證法

分析 根據(jù)證題思路,是由因?qū)Ч,是綜合法的思路,故可得結(jié)論.

解答 解:∵P表示已知條件或已有的定義、公理或定理,Q表示所得到的結(jié)論,
∴證明方法是由因?qū)Ч,是綜合法的思路
故選:B

點(diǎn)評 本題主要考查綜合法的思路:由因?qū)Ч容^簡單,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知x-y=2,求x3-6xy-y3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示是南京青奧會傳遞火炬時,火炬離主會場距離(y)與傳遞時間(x)之間的函數(shù)關(guān)系的圖象,若用黑點(diǎn)表示主會場的位置,則火炬?zhèn)鬟f的路線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.教材曾有介紹:圓x2+y2=r2上的點(diǎn)(x0,y0)處的切線方程為x${\;}_{0}x+{y}_{0}y={r}^{2}$,我們將其結(jié)論推廣:橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(diǎn)(x0,y0)處的切線方程為$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{^{2}}=1$,在解本題時可以直接應(yīng)用,已知:直線x-y+$\sqrt{3}$=0與橢圓E:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>1)有且只有一個公共點(diǎn);
(1)求a的值;
(2)設(shè)O為坐標(biāo)原點(diǎn),過橢圓E上的兩點(diǎn)A、B分別作該橢圓的兩條切線l1、l2,且l1與l2交于點(diǎn)M(2,m),當(dāng)m變化時,求△OAB面積的最大值;
(3)在(2)的條件下,經(jīng)過點(diǎn)M(2,m)作直線l與該橢圓E交于C、D兩點(diǎn),在線段CD上存在點(diǎn)N,使$\frac{|CN|}{|ND|}=\frac{|MC|}{|MD|}$成立,試問:點(diǎn)N是否在直線AB上,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圖是一個商場某段時間制定銷售計(jì)劃時的局部結(jié)構(gòu)圖,從圖中可以看出“計(jì)劃”的制定主要受(  )個因素的影響.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x+alnx,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)在x=1處的切線與直線x+2y=0垂直,求a的值;
(3)在(2)的條件下,設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點(diǎn),記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.“如果b⇒c,a⇒b,則a⇒c”這種推理規(guī)則叫做演繹推理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)P(1,$\frac{3}{2}$),其離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的右頂點(diǎn)為A,直線l交C于兩點(diǎn)M、N(異于點(diǎn)A),且AM⊥AN,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知${\overrightarrow e_1}$和${\overrightarrow e_2}$是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是(  )
A.${\overrightarrow e_1}$和 ${\overrightarrow e_1}$+${\overrightarrow e_2}$B.${\overrightarrow e_1}$-2${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$
C.${\overrightarrow e_1}$+${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$D.2${\overrightarrow e_1}$-${\overrightarrow e_2}$和$\frac{1}{2}$${\overrightarrow e_2}$-${\overrightarrow e_1}$

查看答案和解析>>

同步練習(xí)冊答案