13.集合A={x|x2-3x-10≤0},集合B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈R時(shí),沒(méi)有元素x使x∈A與x∈B同時(shí)成立,求實(shí)數(shù)m的取值范圍.

分析 (1)先化簡(jiǎn)集合A,由B⊆A得B=∅,或m滿足$\left\{\begin{array}{l}m+1≥-2\\ 2m-1≤5\end{array}$,解得即可.
(2)因?yàn)閤∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又沒(méi)有元素x使x∈A與x∈B同時(shí)成立,分類討論,即可求實(shí)數(shù)m的取值范圍.

解答 解:因?yàn)閤2-3x-10≤0,所以(x+2)(x-5)≤0,解得-2≤x≤5.所以A={x|-2≤x≤5}.
(1)當(dāng)m+1>2m-1即m<2時(shí),B=∅滿足B⊆A;(2分)
當(dāng)m+1≤2m-1即m≥2時(shí),要使B⊆A成立,則$\left\{\begin{array}{l}m+1≥-2\\ 2m-1≤5\end{array}$解得2≤m≤3.
綜上所述,當(dāng)m≤3時(shí)有B⊆A.(6分)
(2)因?yàn)閤∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又沒(méi)有元素x使x∈A與x∈B同時(shí)成立,則
①若B=∅,即m+1>2m-1,得m<2時(shí)滿足條件;   (8分)
②若B≠∅,則要滿足條件$\left\{\begin{array}{l}m+1≤2m-1\\ m+1>5\end{array}$解得m>4;或$\left\{\begin{array}{l}m+1≤2m-1\\ 2m-1<-2\end{array}$無(wú)解.
綜上所述,實(shí)數(shù)m的取值范圍為m<2或m>4.(12分)

點(diǎn)評(píng) 本題考查了集合間的關(guān)系,分類討論和數(shù)形結(jié)合是解決問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求下列函數(shù)的周期:
(1)y=2sin$\frac{1}{2}$x;
(2)y=cos(x+$\frac{π}{3}$);
(3)y=2sin($\frac{2}{3}$x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.P到$(0,\sqrt{3}),(0,-\sqrt{3})$距離之和為4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于AB
(Ⅰ)求C的方程        
(Ⅱ)若$\overrightarrow{OA}⊥\overrightarrow{OB}$,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.cos24°cos36°-sin24°cos54°=( 。
A.cos12°B.sin12°C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)的定義域是R,f′(x)是f(x)的導(dǎo)數(shù),f(1)=e,g(x)=f′(x)-f(x),g(1)=0,g(x)的導(dǎo)數(shù)恒大于零,函數(shù)h(x)=f(x)-ex(e=2.71828…是自然對(duì)數(shù)的底數(shù))的最小值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.P為橢圓$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1上的一點(diǎn),F(xiàn)1,F(xiàn)2為焦點(diǎn),且∠F1PF2=30°.
(1)求△F1PF2的周長(zhǎng);
(2)求|PF1|•|PF2|;
(3)求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,已知正方體ABCD-A1B1C1D1,E、F分別是正方形A1B1C1D1和ADD1A1的中心,求EF和CD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.方程${x^2}+{y^2}+ax-2ay+a+\frac{1}{4}=0$為圓的方程,則a的范圍為$(-∞,-\frac{1}{5})∪(1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某校高二年級(jí)的儀仗隊(duì)由6名男生和6名女生組成.
(1)某次活動(dòng)需要從儀仗隊(duì)中選出4名男生和3名女生站成一排,且女生相鄰,那么排列方法有多少種?
(2)儀仗隊(duì)中有3個(gè)男生和2個(gè)女生參加一次訓(xùn)練,教官隨機(jī)地從中選出一人,若選出的是男生,則對(duì)他進(jìn)行10分鐘正步訓(xùn)練,若選出的是女生,則對(duì)她進(jìn)行5分鐘正步訓(xùn)練.完成訓(xùn)練的學(xué)生不再歸隊(duì),教官再隨機(jī)地選出另外一人,直到完成訓(xùn)練的男生多于女生為止,整個(gè)訓(xùn)練結(jié)束.設(shè)本次訓(xùn)練的總時(shí)間為ξ,求ξ的分布列與期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案