已知橢圓
x2
25
+
y2
16
=1
上的點(diǎn)P到一個(gè)焦點(diǎn)的距離為3,則P到另一個(gè)焦點(diǎn)的距離為
7
7
分析:橢圓
x2
25
+
y2
16
=1
的長(zhǎng)軸長(zhǎng)為10,根據(jù)橢圓的定義,利用橢圓
x2
25
+
y2
16
=1
上的點(diǎn)P到一個(gè)焦點(diǎn)的距離為3,即可得到P到另一個(gè)焦點(diǎn)的距離.
解答:解:橢圓
x2
25
+
y2
16
=1
的長(zhǎng)軸長(zhǎng)為10
根據(jù)橢圓的定義,∵橢圓
x2
25
+
y2
16
=1
上的點(diǎn)P到一個(gè)焦點(diǎn)的距離為3
∴P到另一個(gè)焦點(diǎn)的距離為10-3=7
故答案為:7
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P(x,y)在橢圓
x2
25
+
y2
16
=1上,若A點(diǎn)坐標(biāo)為(1,0),|
AM
|=1且
PM
AM
=0
,則|
PM
|
的最小值是
119
3
119
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在y軸上的橢圓方程為
x2
25-k
+
y2
k-9
=1
,則k的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
25
+
y2
9
=1
,過(guò)橢圓右焦點(diǎn)F的直線L交橢圓于A、B兩點(diǎn),交y軸于P點(diǎn).設(shè)
PA
=λ1
AF
,
PB
=λ2
BF
,則λ12等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是
x2
25
+
y2
9
=1(x≠0,y≠0)
上的動(dòng)點(diǎn)P,F(xiàn)1、F2是橢圓的兩個(gè)焦點(diǎn),O是坐標(biāo)原點(diǎn),若M是∠F1PF2的角平分線上一點(diǎn),且
F1M
MP
=0
,則|
OM
|
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓
x2
25
+
y2
9
=1
,過(guò)橢圓右焦點(diǎn)F的直線L交橢圓于A、B兩點(diǎn),交y軸于P點(diǎn).設(shè)
PA
=λ1
AF
PB
=λ2
BF
,則λ12等于( 。
A.-
9
25
B.-
50
9
C.
50
9
D.
9
25

查看答案和解析>>

同步練習(xí)冊(cè)答案