已知函數(shù).
(1)當時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上不單調,求的取值范圍;
(3)當時,函數(shù)的圖像與x軸交于兩點,且,又是的導函數(shù),若正常數(shù)滿足條件.證明:.
(1)-1;(2) ;(3)參考解析
解析試題分析:(1)因為函數(shù),當時.求出函數(shù)的導數(shù),即可得到上函數(shù)的單調性,從而得到函數(shù)的最大值.
(2)因為,若在區(qū)間上不單調,即等價于函數(shù)在(0,3)上有實數(shù)解,且無重根.所以由,分離變量,通過研究函數(shù),的范圍,即可得到取值范圍.
(3)因為當時,函數(shù)的圖像與x軸交于兩點,所以可得即可用表示m.又由化簡.可消去m.即可得到關于的代數(shù)式,再利用導數(shù)知識求出的最值即可得結論.
試題解析:(1)
函數(shù)在[,1]是增函數(shù),在[1,2]是減函數(shù),
所以.
(2)因為,所以,
因為在區(qū)間上不單調,所以在(0,3)上有實數(shù)解,且無重根,
由,有=,()
所以
(3)∵,又有兩個實根,
∴,兩式相減,得,
∴,
于是
.
.
要證:,只需證:
只需證:.(*)
令,∴(*)化為 ,只證即可. 在(0,1)上單調遞增,,即.
∴.
考點:1.函數(shù)的最值.2.函數(shù)的單調性的應用.3.等價變換數(shù)學思想.4.換元的數(shù)學思想.5.運算量較大屬于有難度題型.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)在上的最大值與最小值;
(2)若時,函數(shù)的圖像恒在直線上方,求實數(shù)的取值范圍;
(3)證明:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當的值時,若直線與曲線沒有公共點,求的最大值.
(注:可能會用到的導數(shù)公式:;)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
(1)當a=0時,f(x)≥g(x)在(1,+∞),上恒成立,求實數(shù)m的取值范圍;
(2)當m=2時,若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個不同的零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)(其中),,已知它們在處有相同的切線.
(1)求函數(shù),的解析式;
(2)求函數(shù)在上的最小值;
(3)判斷函數(shù)零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com