已知函數(shù)
(1)求函數(shù)在
上的最大值與最小值;
(2)若時,函數(shù)
的圖像恒在直線
上方,求實數(shù)
的取值范圍;
(3)證明:當時,
.
(1);(2)實數(shù)
取值范圍是
;(3)證明過程見解析.
解析試題分析:(1)求導(dǎo)函數(shù),判斷的單調(diào)性,可求得最值;(2)將圖象問題轉(zhuǎn)化為不等式
在
恒成立的問題,進而變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/38/e/apkpf2.png" style="vertical-align:middle;" />恒成立,即求
的取值范圍的問題,可得
取值范圍是
;(3)利用
,令
轉(zhuǎn)化為
,累加即可.
試題解析:
解:(1)定義域為,且
, 1分
當時,
,當
時,
在
為為減函數(shù);在
上為增函數(shù),3分
4分
5分
(2)當時,函數(shù)
的圖像恒在直線
的上方,等價于
時不等式
恒成立,即
恒成立, 6分
令,
則
,當
時,
,故
在
上遞增,所以
時,
, 9分
故滿足條件的實數(shù)取值范圍是
10分
(3)證明:由(2)知當時,
11分
令,則
,化簡得
13分
即 14分
考點:利用導(dǎo)數(shù)求函數(shù)的最值,轉(zhuǎn)化與化歸的數(shù)學(xué)思想,構(gòu)造法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前
項和為
,且
,對任意
,都有
.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中
).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在
上有且只有一個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)若,求函數(shù)
在
上的最小值;
(2)若函數(shù)在
存在單調(diào)遞增區(qū)間,試求實數(shù)
的取值范圍;
(3)求函數(shù)的極值點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當時,求函數(shù)
在
上的最大值;
(2)令,若
在區(qū)間
上不單調(diào),求
的取值范圍;
(3)當時,函數(shù)
的圖像與x軸交于兩點
,且
,又
是
的導(dǎo)函數(shù),若正常數(shù)
滿足條件
.證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com