3.如圖為某三岔路口交通環(huán)島的簡化模型,在某高峰時(shí)段,單位時(shí)間進(jìn)出路口A,B,C的機(jī)動(dòng)車輛數(shù)如圖所示,圖中x1,x2,x3分別表示該時(shí)段單位時(shí)間通過路段$\widehat{AB},\widehat{BC},\widehat{CA}$的機(jī)動(dòng)車輛數(shù)(假設(shè):單位時(shí)間內(nèi),在上述路段中,同一路段上駛?cè)肱c駛出的車輛數(shù)相等),則x1,x2,x3的大小關(guān)系為x1<x3<x2.(按由小到大的順序排列).

分析 根據(jù)每個(gè)岔口車輛數(shù)目之間的關(guān)系,結(jié)合不等式的大小比較進(jìn)行判斷即可.

解答 解:依題意,有x1=50+x3-55=x3-5,
∴x1<x3
同理,x2=30+x1-20=x1+10
∴x1<x2,
同理,x3=30+x2-35=x2-5
∴x3<x2
即x1<x3<x2
故答案為:x1<x3<x2

點(diǎn)評 本題主要考查不等式以及不等關(guān)系的判斷,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式組$\left\{\begin{array}{l}{x>0}\\{y>0}\\{4x+3y<12}\end{array}\right.$,所表示平面區(qū)域的整點(diǎn)個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.?dāng)?shù)據(jù)a1,a2,…,an的方差為S2,平均數(shù)為μ,則數(shù)據(jù)ka1+b,ka2+b,…,kan+b(k,b≠0)的標(biāo)準(zhǔn)差為kS;平均數(shù)為kμ+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=ax2+(b-8)x-a-ab,當(dāng)x∈(-3,2)時(shí),f(x)>0;x∈(-∞,-3)∪(2,+∞)時(shí),f(x)<0
(1)求y=f(x)的解析式;
(2)當(dāng)實(shí)數(shù)c為何值時(shí),關(guān)于x的不等式ax2+bx+c≤0的解集為R.
(3)解關(guān)于x的不等式f(x)<3(2+m)(3-m),(m∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a=$\frac{\sqrt{2}}{2}$(sin17°+cos17°),b=2cos213°-1,c=$\frac{\sqrt{3}}{2}$.則a,b,c的大小關(guān)系是( 。
A.c<a<bB.a<c<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(理科)在等比數(shù)列{an}中,a1+a7=65,a3a5=64,且an+1<an,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn=lga2+lga4+…+lga2n,求Tn的最大值及此時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.關(guān)于x的不等式|sinx|+$\sqrt{3}$|cosx|<$\sqrt{3}$的解集為(kπ+$\frac{π}{3}$,kπ+$\frac{2π}{3}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知區(qū)域D:$\left\{\begin{array}{l}x+y-1≥0\\ x-y+1≥0\\ 3x-y-3≤0\end{array}$,直線y=kx+1等分區(qū)域D的面積,則實(shí)數(shù)k的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x+y-4≤0\\ x-2y+2≥0\\ x≥0\\ y≥0\end{array}\right.$,則${({\frac{1}{2}})^{x-y}}$的最大值為( 。
A.1B.2C.4D.9

查看答案和解析>>

同步練習(xí)冊答案