【題目】已知拋物線與過(guò)點(diǎn)的直線交于兩點(diǎn).

1)若,求直線的方程;

2)若,軸,垂足為,探究:以為直徑的圓是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

【答案】1;(2)過(guò)定點(diǎn),

【解析】

1)設(shè)出直線的方程,聯(lián)立直線與拋物線方程,利用根與系數(shù)的關(guān)系及弦長(zhǎng)公式計(jì)算即可;

2)設(shè)以為直徑的圓經(jīng)過(guò)點(diǎn),,,利用,令解方程組即可.

1)由題可知,直線的斜率不為0,設(shè)其方程為,

代入,消去可得,

顯然,設(shè),,則,,

所以

因?yàn)?/span>,所以,解得,

所以直線的方程為.

2)因?yàn)?/span>,所以是線段的中點(diǎn),

設(shè),則由(1)可得,

所以,又軸,垂足為,所以,

設(shè)以為直徑的圓經(jīng)過(guò)點(diǎn),則,,

所以,即,

化簡(jiǎn)可得①,

,可得

所以當(dāng),時(shí),對(duì)任意的,①式恒成立,

所以以為直徑的圓過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線,過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線、兩點(diǎn),當(dāng)最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解戶籍性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各人;男性人,女性.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是(

A.是否傾向選擇生育二胎與戶籍有關(guān)

B.是否傾向選擇生育二胎與性別無(wú)關(guān)

C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,四邊形是矩形,平面平面,,,的中點(diǎn),為線段上的一點(diǎn).

1)求證:;

2)若二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,右頂點(diǎn)為,右焦點(diǎn)為,為坐標(biāo)原點(diǎn),,橢圓過(guò)點(diǎn)

1)求橢圓的方程;

2)若過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn)之間),求面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為).

1)分別寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;

2)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報(bào)父母恩”的活動(dòng),對(duì)六個(gè)年級(jí)(一年級(jí)到六年級(jí)的年級(jí)代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進(jìn)行了調(diào)查統(tǒng)計(jì),繪制得到下面的散點(diǎn)圖.

(1)由散點(diǎn)圖看出,可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計(jì)該校學(xué)生升入中學(xué)的第一年(年級(jí)代碼為7)給父母洗腳的百分比.

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計(jì)公式分別為 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為.直線被稱作為橢圓的一條準(zhǔn)線.點(diǎn)在橢圓(異于橢圓左、右頂點(diǎn)),過(guò)點(diǎn)作直線與橢圓相切,且與直線相交于點(diǎn).

1)求證:.

2)若點(diǎn)軸的上方,,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)當(dāng)時(shí),求方程的解;

(3)若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案