【題目】橢圓的右焦點為,且短軸長為,離心率為.
(1)求橢圓的標準方程;
(2)設(shè)點為橢圓與軸正半軸的交點,是否存在直線,使得交橢圓于兩點,且恰是的垂心?若存在,求的方程;若不存在,說明理由.
【答案】(1);(2)存在,.
【解析】
(1)根據(jù)短軸長和離心率可求,從而得到橢圓的標準方程;
(2)假設(shè)存在直線,則其斜率為,設(shè)的方程為,,由為垂心可得,聯(lián)立直線方程和橢圓方程,消去后利用韋達定理可得關(guān)于的方程,解該方程后可得所求的直線方程.
(1)設(shè)橢圓的方程為,則由題意知,所以.
,解得,所以橢圓的方程為.
(2)由(1)知,的方程為,所以,
所以直線的斜率,假設(shè)存在直線,使得是的垂心,則.
設(shè)的斜率為,則,所以.
設(shè)的方程為,.
由,得,
由,得,
.
因為,所以,因為,
所以,
即,
整理得,
所以,
整理得,解得或,
當(dāng)時,直線過點,不能構(gòu)成三角形,舍去;
當(dāng)時,滿足,
所以存在直線,使得是的垂心,的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設(shè)點T(t,o)滿足:存在圓M上的兩點P和Q,使得,求實數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的奇函數(shù),滿足,下面四個關(guān)于函數(shù)的說法:①存在實數(shù),使關(guān)于的方程有個不相等的實數(shù)根;②當(dāng)時,恒有;③若當(dāng)時,的最小值為,則;④若關(guān)于的方程和的所有實數(shù)根之和為零,則.其中說法正確的有______.(將所有正確說法的標號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=2,直線CA與平面ABD所成角的正弦值為,求二面角E-AD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組到進行社會實踐調(diào)查,了解到某公司為了實現(xiàn)1000萬元利潤目標,準備制定激勵銷售人員的獎勵方案:在銷售利潤超過10萬元時,按銷售利潤進行獎勵,且獎金y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%.同學(xué)們利用函數(shù)知識,設(shè)計了如下的函數(shù)模型,其中符合公司要求的是(參考數(shù)據(jù):,)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù)為的導(dǎo)函數(shù).
(1)若,都有成立(其中),求的值;
(2)證明:當(dāng)時,;
(3)設(shè)當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),直線與曲線分別交于兩點.
(1)若點的極坐標為,求的值;
(2)求曲線的內(nèi)接矩形周長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com