4.若$tanθ+\frac{1}{tanθ}=\sqrt{5}$,則sin2θ=$\frac{2\sqrt{5}}{5}$.

分析 利用同角三角函數(shù)的基本關(guān)系,二倍角公式,把要求的式子化為$\frac{2}{tanθ+\frac{1}{tanθ}}$,可得結(jié)果.

解答 解:若$tanθ+\frac{1}{tanθ}=\sqrt{5}$,∴sin2θ=$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{2}{tanθ+\frac{1}{tanθ}}$=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
故答案為:$\frac{2}{5}\sqrt{5}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A(m,2)(m>1)是拋物線上一點(diǎn),且滿足|AF|=$\frac{5}{2}$.
(1)求拋物線的方程;(2)已知M(-2,0),N(2,0),過N的直線與拋物線交于C,D兩點(diǎn),若S△MCD=16,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=2x+\frac{1}{x}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷f(x)在[2,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.我們把離心率e=$\frac{\sqrt{5}+1}{2}$的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)稱為黃金雙曲線.如圖是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0,c=$\sqrt{{a}^{2}+^{2}}$)的圖象,給出以下幾個(gè)說法:
①若b2=ac,則該雙曲線是黃金雙曲線;
②若F1,F(xiàn)2為左右焦點(diǎn),A1,A2為左右頂點(diǎn),B1(0,b),B2(0,-b)且∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
③若MN經(jīng)過右焦點(diǎn)F2且MN⊥F1F2,∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確命題的序號(hào)為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.同時(shí)投擲兩個(gè)骰子,記向上的點(diǎn)數(shù)分別為a,b,設(shè)函數(shù)f(x)=(a-b)x2+bx+1.
(1)求f(x)為偶函數(shù)的概率;
(2)求f(x)在$[{-\frac{1}{2},+∞})$上單調(diào)遞增的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓${C_1}:{x^2}+{y^2}=1$,圓${C_2}:{(x-3)^2}+{(y-4)^2}=9$,則圓C1與圓C2的位置關(guān)系是( 。
A.內(nèi)含B.外離C.相交D.相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)命題p:方程$\frac{x^2}{m-1}+\frac{y^2}{m+2}=1$表示雙曲線,命題q:關(guān)于x的方程x2+mx+4=0有實(shí)數(shù)解.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)求使“p∨q”為假命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義新運(yùn)算⊕:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2,則函數(shù)f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過拋物線y2=2px(p>0)的焦點(diǎn)F作傾斜角為60°的直線l,若直線l與拋物線在第一象限的交點(diǎn)為A并且點(diǎn)A也在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線上,則雙曲線的離心率為$\frac{{\sqrt{21}}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案