14.已知復(fù)數(shù)z=$\frac{2}{1-i}$-2i,則z的共軛復(fù)數(shù)是( 。
A.1-iB.1+2iC.1-2iD.1+i

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z得答案.

解答 解:z=$\frac{2}{1-i}$-2i=$\frac{2(1+i)}{(1-i)(1+i)}-2i=1+i-2i=1-i$,
則z的共軛復(fù)數(shù)是:1+i.
故選:D.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若點(diǎn)P在函數(shù)y=-x2+3lnx的圖象上,點(diǎn)Q在函數(shù)y=x+2的圖象上,則|PQ|的最小值為( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.選擇適當(dāng)?shù)姆椒ㄗC明
(1)$\sqrt{7}$+$\sqrt{13}$<3+$\sqrt{11}$;
(2)已知a,b,c>0,求證:a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知盒中有大小相同的3個紅球和2個白球,若每次不放回的從盒中取一個球,一直到取出所有白球時停止抽取,則停止抽取時恰好取到兩個紅球的概率為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在半徑為R的圓內(nèi)隨機(jī)撒一粒黃豆,它落在陰影部分內(nèi)接正三角形上的概率是$\frac{3\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若關(guān)于x的不等式$\sqrt{9-{x^2}}$≤k(x+2)-$\sqrt{2}$的解集為[a,b],且b-a=2,則k=( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.銳角△ABC中,角A,B,C的對邊分別是a,b,c,a=4,b=5,△ABC的面積為$5\sqrt{3}$,則邊c=$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC三邊上的高依次為2、3、4,則△ABC為(  )
A.銳角三角形B.鈍角三角形
C.直角三角形D.不存在這樣的三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某觀測站C在城A的南偏西20?的方向上,由A城出發(fā)有一條公路,走向是南偏東40?,在C處測得距C為31千米的公路上B處有一人正沿公路向A城走去,走了20千米后,到達(dá)D處,此時C、D間距離為21千米,則此人還需走15千米到達(dá)A城.

查看答案和解析>>

同步練習(xí)冊答案