【題目】下列各組函數(shù)是同一函數(shù)的是(

A.B.

C.D.

【答案】AC

【解析】

根據(jù)同一函數(shù)的定義:如果兩個函數(shù)的定義域相同,并且對應關系完全相同,這兩個函數(shù)是同一函數(shù).對四個選項逐一判斷即可.

選項A:兩個函數(shù)的定義域相同,并且對應關系完全相同,因此函數(shù)是同一函數(shù);

選項B雖然的定義域都是非正實數(shù)集,但是的值域是非負實數(shù)集, 的值域為非正實數(shù)集,故兩個函數(shù)的對應關系不一樣,所以這兩個函數(shù)不是同一函數(shù);

選項C:兩個函數(shù)的定義域為不等于1的實數(shù)集,對應關系一樣,故兩個函數(shù)是同一函數(shù);

選項D:兩個函數(shù)的定義域都是實數(shù)集, 但是的值域是實數(shù)集, 的值域為非負實數(shù)集,故兩個函數(shù)的對應關系不一樣,所以這兩個函數(shù)不是同一函數(shù);

故選:AC

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=logax(a>0,a≠1),設數(shù)列f(a1),f(a2),f(a3),…,f(an)…是首項為4,公差為2的等差數(shù)列.
(I)設a為常數(shù),求證:{an}成等比數(shù)列;
(II)設bn=anf(an),數(shù)列{bn}前n項和是Sn , 當時,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,數(shù)列滿足.

(1)求數(shù)列的通項公式;

(2),求數(shù)列的前項和;

(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當0時,<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某機械廠欲從米,米的矩形鐵皮中裁剪出一個四邊形加工成某儀器的零件,裁剪要求如下:點分別在邊上,且.設,四邊形的面積為(單位:平方米).

(1)求關于的函數(shù)關系式,求出定義域;

(2)當的長為何值時,裁剪出的四邊形的面積最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家研究某位學生的學習情況發(fā)現(xiàn):若這位學生剛學完的知識存留量記為1,則x天后的存留量;若在tt4)天時進行第一次復習,則此時知識存留量比未復習情況下增加一倍(復習時間忽略不計),其后存留量y2隨時間變化的曲線恰為直線的一部分,其斜率為a0),存留量隨時間變化的曲線如圖所示.當進行第一次復習后的存留量與不復習的存留量相差最大時,則稱此時刻為二次復習最佳時機點

1)若a=-1,t5二次復習最佳時機點;

2)若出現(xiàn)了二次復習最佳時機點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設該公司年內共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤W(萬元〉關于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , Sn=2an﹣1,{bn}是等差數(shù)列,且b1=a1 , b4=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若 ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案