6.已知函數(shù)f(x)=log2(2x+1).
(1)求證:函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增;
(2)記f-1(x)為函數(shù)f(x)的反函數(shù).若關(guān)于x的方程f-1(x)=m+f(x)在[1,2]上有解,求m的取值范圍;
(3)若f(x+t)>2x對于x∈[1,2]恒成立,求t的取值范圍.

分析 (1)用單調(diào)性定義證明,先任取兩個變量,且界定大小,再作差變形,通過分析,與零比較,要注意變形要到位;
(2)先求得反函數(shù)f-1(x)=log2(2x-1)(x>0),構(gòu)造函數(shù),利用復(fù)合函數(shù)的單調(diào)性求得函數(shù)的值域;
(3)原不等式轉(zhuǎn)化為2x+t+1>22x,x∈[1,2]恒成立,解得即可.

解答 解:(1)任取x1<x2,則f(x1)-f(x2)=log2(2x1+1)-log2(2x2+1)=log2$\frac{{2}^{{x}_{1}}+1}{{2}^{{x}_{2}}+1}$,
∵x1<x2,∴0<2x1+1<2x2+1,
∴0<$\frac{{2}^{{x}_{1}}+1}{{2}^{{x}_{2}}+1}$<1,log2$\frac{{2}^{{x}_{1}}+1}{{2}^{{x}_{2}}+1}$<0
∴f(x1)<f(x2),
即函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增
(2)∵f-1(x)=log2(2x-1)(x>0),
∴m=f-1(x)-f(x)=log2(2x-1)-log2(2x+1)=log2$\frac{{2}^{x}-1}{{2}^{x}+1}$=log2(1-$\frac{2}{{2}^{x}+1}$)
當(dāng)1≤x≤2時,$\frac{2}{5}$≤$\frac{2}{{2}^{x}+1}$≤$\frac{2}{3}$,
∴$\frac{1}{3}$≤1-$\frac{2}{{2}^{x}+1}$≤$\frac{3}{5}$
∴m的取值范圍是[log2$\frac{1}{3}$,log2$\frac{3}{5}$].
(3)∵f(x+t)>2x對于x∈[1,2]恒成立,
∴l(xiāng)og2(2x+t+1)>2x=log222x,
∴2x+t+1>22x,x∈[1,2]恒成立
∴22+t+1>24,
解得t>log2$\frac{15}{4}$.
故t的取值范圍為(log2$\frac{15}{4}$,+∞).

點(diǎn)評 本題主要考查函數(shù)與方程的綜合運(yùn)用,主要涉及了用單調(diào)性的定義證明函數(shù)的單調(diào)性以及構(gòu)造函數(shù)研究函數(shù)的性質(zhì)等問題,還考查了轉(zhuǎn)化思想和構(gòu)造轉(zhuǎn)化函數(shù)的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|0≤x≤2},B={y|y=2x,x>0},則A∩B=( 。
A.(1,2]B.[0,1)∪(2,+∞)C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=b(1-$\frac{2}{1+{2}^{x}}$)+$\frac{a•({4}^{x}-1)}{{2}^{x}}$+3(a、b為常數(shù)),若f(x)在(0,+∞)上有最大值11,則f(x)在(-∞,0)上有( 。
A.最大值10B.最小值-5C.最小值-4D.最大值5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a=lg35,b=lg34,c=lg22,則( 。
A.a>b>cB.c>a>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下面結(jié)論中,正確命題的個數(shù)為3.
①當(dāng)直線l1和l2斜率都存在時,一定有k1=k2⇒l1∥l2
②如果兩條直線l1與l2垂直,則它們的斜率之積一定等于-1.
③已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1、B1、C1、A2、B2、C2為常數(shù)),若直線l1⊥l2,則A1A2+B1B2=0.
④點(diǎn)P(x0,y0)到直線y=kx+b的距離為$\frac{|k{x}_{0}+b|}{\sqrt{1+{k}_{2}}}$.
⑤直線外一點(diǎn)與直線上一點(diǎn)的距離的最小值就是點(diǎn)到直線的距離.
⑥若點(diǎn)A,B關(guān)于直線l:y=kx+b(k≠0)對稱,則直線AB的斜率等于-$\frac{1}{k}$,且線段AB的中點(diǎn)在直線l上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.定義關(guān)于x的不等式|x-A|<B(A∈R,B>0)的解集稱為A的B鄰域.若a+b-3的a+b鄰域是區(qū)間(-3,3),則a2+b2的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解不等式a2x2-ax-2<0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某禮堂有20排座位,第一排有18個座位,以后每排都比第一排多2個位置,這個禮堂共能做740人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某公司在今年年初用98萬元購進(jìn)一套設(shè)備,并立即投入生產(chǎn)使用,該設(shè)備每年需要花費(fèi)一定的維修保養(yǎng)費(fèi),假設(shè)使用x年的維修保養(yǎng)費(fèi)一共為2x2+10x萬元,則該設(shè)備使用后,每年的總收入為50萬元,設(shè)使用x(x∈N*)年后的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)解析式;
(2)從第幾年開始,該設(shè)備開始盈利(盈利額為正值);
(3)使用若干年后,對該設(shè)備的處理方案有兩種:
①當(dāng)年平均盈利額(即$\frac{y}{x}$)達(dá)到最大值時,以30萬元價格處理該設(shè)備;
②當(dāng)盈利額達(dá)到最大值時,以12萬元價格處理該設(shè)備.
問用哪種方案處理較為合理?請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案