【題目】橢圓C過(guò)點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過(guò)F的直線l與橢圓C相交于A、B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PA、PB的斜率分別為k1k2

(1)求橢圓C的方程;

(2)如果直線l的斜率等于-1,求出k1k2的值;

(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

【答案】(1)(2)(3)

【解析】

(1)利用已知條件求出b,即可求解橢圓方程.

(2)直線l:y=-x+1,設(shè)AB坐標(biāo),聯(lián)立利用韋達(dá)定理以及斜率公式求解即可.

(3)當(dāng)直線AB的斜率不存在時(shí),不妨設(shè)A,B,求出斜率,即可;當(dāng)直線AB的斜率存在時(shí),設(shè)其為k,求直線AB:y=k(x-1),聯(lián)立直線與橢圓的方程組,利用韋達(dá)定理以及斜率

公式化簡(jiǎn)求解即可.

解:(1)∵a=2,又c=1,∴,∴橢圓方程為

(2)直線ly=-x+1,設(shè)Ax1,y1Bx2y2),

y7x2-8x-8=0,有,

(3)當(dāng)直線AB的斜率不存在時(shí),不妨設(shè)A(1,),B(1,-),

,,故k1+k2=2.

當(dāng)直線AB的斜率存在時(shí),設(shè)其為k,則直線ABy=kx-1),設(shè)Ax1,y1Bx2,y2),

y得(4k2+3)x2-8k2x+(4k2-12)=0,

.

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,一動(dòng)圓與直線相切且與圓外切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)過(guò)作直線,交(1)中軌跡兩點(diǎn),若中點(diǎn)的縱坐標(biāo)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】和平面解析幾何的觀點(diǎn)相同,在空間中,空間平面和曲面可以看作是適合某種條件的動(dòng)點(diǎn)的軌跡,在空間直角坐標(biāo)系中,空間平面和曲面的方程是一個(gè)三原方程.

1)類(lèi)比平面解析幾何中直線的方程,寫(xiě)出①過(guò)點(diǎn),法向量為的平面的點(diǎn)法式方程;②平面的一般方程;③在,軸上的截距分別為,,的平面的截距式方程.(不需要說(shuō)明理由)

2)設(shè)為空間中的兩個(gè)定點(diǎn),,我們將曲面定義為滿足的動(dòng)點(diǎn)的軌跡,試建立一個(gè)適當(dāng)?shù)目臻g直角坐標(biāo)系,求曲面的方程.

3)對(duì)(2)中的曲面,指出和證明曲面的對(duì)稱(chēng)性,并畫(huà)出曲面的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下圖頻率分布直方圖:

I)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

II)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.

i)利用該正態(tài)分布,求;

ii)某用戶從該企業(yè)購(gòu)買(mǎi)了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結(jié)果,求.

附:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)、兩種零件,其質(zhì)量測(cè)試按指標(biāo)劃分,指標(biāo)大于或等于的為正品,小于的為次品.現(xiàn)隨機(jī)抽取這兩種零件各100個(gè)進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

零件

8

12

40

30

10

零件

9

16

40

28

7

(Ⅰ)試分別估計(jì)、兩種零件為正品的概率;

(Ⅱ)生產(chǎn)1個(gè)零件,若是正品則盈利50元,若是次品則虧損10元;生產(chǎn)1個(gè)零件,若是正品則盈利60元,若是次品則虧損15元,在(Ⅰ)的條件下:

(i)設(shè)為生產(chǎn)1個(gè)零件和一個(gè)零件所得的總利潤(rùn),求的分布列和數(shù)學(xué)期望;

(ii)求生產(chǎn)5個(gè)零件所得利潤(rùn)不少于160元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yf(x)的導(dǎo)函數(shù)f′(x)的圖像如圖所示,則下列結(jié)論正確的是(  )

A.f(x)在(-3,-1)上先增后減B.x=-2是f(x)極小值點(diǎn)

C.f(x)在(-1,1)上是增函數(shù)D.x=1是函數(shù)f(x)的極大值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn)

(1)求的方程;

(2)是否存在直線相交于兩點(diǎn),且滿足:①為坐標(biāo)原點(diǎn))的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,,是邊長(zhǎng)為的等邊三角形,

(1)證明:.

(2)求二面角的余弦值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,,都是常數(shù),.若的零點(diǎn)為,,則下列不等式正確的是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案