已知向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
).記f(x)=
m
n

(Ⅰ)求f(x)的周期;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a、b、c,且滿足(2a-c)cosB=bcosC,若f(A)=
1+
3
2
,試判斷△ABC的形狀.
考點:平面向量數(shù)量積的運算,正弦定理
專題:平面向量及應(yīng)用
分析:(Ⅰ)由題意利用兩個向量的數(shù)量積公式、三角恒等變換可得f(x)=
m
n
=sin(
x
2
+
π
6
)+
1
2
,由此可得函數(shù)的最小正周期.
(Ⅱ)在△ABC中,根據(jù)(2a-c)cosB=bcosC,利用正弦定理求得cosB=
1
2
,B=
π
3
.再由f(A)=
1+
3
2
,求得A=
π
3
,可得 C=
π
3
,從而得出結(jié)論.
解答: 解:(Ⅰ)由題意可得f(x)=
m
n
=
3
sin
x
4
cos
x
4
+cos2
x
4
=
3
2
sin
x
2
+
1
2
cos
x
2
+
1
2
=sin(
x
2
+
π
6
)+
1
2
,
故函數(shù)的最小正周期為
1
2
=4π.
(Ⅱ)在△ABC中,根據(jù)(2a-c)cosB=bcosC,利用正弦定理,可得 2sinAcosB-sinCcosB=sinBcosC,
即2sinAcosB=sin(B+C)=sinA,∴cosB=
1
2
,B=
π
3

∵f(A)=sin(
A
2
+
π
6
)+
1
2
=
1+
3
2
,∴sin(
A
2
+
π
6
)=
3
2
,∴
A
2
+
π
6
=
π
3
,或
A
2
+
π
6
=
3

求得A=
π
3
,或A=π(舍去),即A=
π
3
,∴C=
π
3
,故△ABC為等邊三角形.
點評:本題主要考查兩個向量的數(shù)量積公式,正弦函數(shù)的周期性,三角恒等變換,三角形內(nèi)角和公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下命題(m,l表示直線,α表示平面)正確的個數(shù)有( 。
①若l∥m,m?α,則l∥α;②若l∥α,m?α,則l∥m
③若l⊥α,m?α,則l⊥m;④若l⊥α,m⊥l,則m∥α.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(a+lnx)的圖象在點(e,f(e))(e為自然對數(shù)的底數(shù))處的切線的斜率為3.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若k為整數(shù)時,k(x-1)<f(x)對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,a+b=5,c=
7
,C=
x
3

(1)求a,b;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為
1
2
,中獎可以獲得3分;方案乙的中獎率為
2
3
,中獎可以得2分;未中獎則不得分,每人有且只有兩次抽獎機(jī)會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(Ⅰ)若小亮選擇方案甲、方案乙各抽獎一次,求他的累計得分不為零的概率;
(Ⅱ)若小亮的抽獎方式是在方案甲、或方案乙中選擇其一連抽兩次,或選擇方案甲、方案乙各抽一次,求小亮選擇哪一種方式抽獎,累計得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某耐磨廠對一批耐磨球的單個重量(單位:克)進(jìn)行了抽樣檢測,并繪制出頻率分布直方圖,已知耐磨球單個重量的范圍為[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,104),[104,106)
(1)求圖中x的值;
(2)已知這批耐磨球共有5000個,試估計這批耐磨球中單個重量小于100克的球的個數(shù);
(3)現(xiàn)從第一組到第五組(從左到右依次為第一組、第二組、…、第五組)中各取一求放入盒中充分?jǐn)嚢,然后隨機(jī)選出兩球進(jìn)行配對,若選出的兩球所在的組數(shù)相鄰,則稱這兩球為“姊妹球”,試求選出的兩球為為“姊妹球”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:(2+m)x+(1+2m)y+4-3m=0.
(1)求證:不論m為何實數(shù),直線l恒過一定點M;
(2)過定點M作一條直線l1,使夾在兩坐標(biāo)軸之間的線段被M點平分,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定圓M:(x+1)2+y2=16,動圓N過點D(1,0),且和圓M相切,記動圓的圓心N的軌跡為C.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)已知圓O:x2+y2=3在y軸右邊部分上有一點P,過點P作該圓的切線l:y=kx+m,且直線l交曲線C于A、B兩點,求△ABD的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
x3-x2+bx在x=3處取得極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案