10.已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a3a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{4}{{{a_n}•{a_n}_{+1}}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

分析 (1)利用一元二次方程的根與系數(shù)的關(guān)系、等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用“裂項(xiàng)求和”即可得出.

解答 解:(1)∵{an}為等差數(shù)列,
∴a3+a4=a2+a5=22.
∵a3•a4=117,
∴${a_3},{a_4}是方程{x^2}-22x+117=0$的兩實(shí)根,
∵公差d>0,∴a3<a4
∴a3=9,a4=13.
∵$\left\{\begin{array}{l}{{a}_{1}+2d=9}\\{{a}_{1}+3d=13}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=4}\end{array}\right.$,
∴an=1+4(n-1)=4n-3.
(2)${b_n}=\frac{4}{{{a_n}•{a_n}_{+1}}}=\frac{4}{(4n-3)•(4n+1)}=\frac{1}{4n-3}-\frac{1}{4n+1}$,
Tn=b1+b2+…+bn
=$(1-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{9})$+…+$(\frac{1}{4n-3}-\frac{1}{4n+1})$
=$1-\frac{1}{4n+1}$.

點(diǎn)評(píng) 本題考查了一元二次方程的根與系數(shù)的關(guān)系、等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)=asin(x-$\frac{π}{3}$)+b滿足f($\frac{π}{3}$)+f($\frac{π}{2}$)=7且f(π)-f(0)=2$\sqrt{3}$.求
(1)f(x)的解析式及f(x)的單調(diào)減區(qū)間;
(2)使f(x)=4的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知($\root{3}{x}$+x22n的展開式的二項(xiàng)式系數(shù)之和比(3x-1)n的展開式的二項(xiàng)系數(shù)之和大992.求(2x+$\frac{1}{x}$)2n的展開式中:
(1)常數(shù)項(xiàng);
(2)系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an},a1=1且點(diǎn)(an,an+1)在函數(shù)y=2x+1的圖象上,則a3=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.現(xiàn)將2名醫(yī)生和3名護(hù)士分配到甲,乙兩所學(xué)校給學(xué)生體檢,若甲校分配1名醫(yī)生和1名護(hù)士,則不同的分配方法共有6種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點(diǎn)P(3,0)到直線3x+4y+1=0的距離是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{p}$與$\overrightarrow{q}$是兩個(gè)夾角為60°的單位向量,且2$\overrightarrow{p}$-$\overrightarrow{q}$與k$\overrightarrow{p}$+$\overrightarrow{q}$的夾角為120°,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{π}{4}$+β)=-$\frac{12}{13}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(π,$\frac{5π}{4}$),則sin(α+β)=-$\frac{56}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知銳角α,鈍角β的始邊都是x軸的非負(fù)半軸,終邊分別與單位圓交于點(diǎn)P($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),Q(-$\frac{3}{5}$,$\frac{4}{5}$)
(1)求sin∠POQ;
(2)設(shè)函數(shù)f(x)=2$\sqrt{3}{cos^2}$x+sin2x,x∈[0,α],求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案