5.設(shè)ABCD-A1B1C1D1是棱長為的a的正方體,則有( 。
A.$\overrightarrow{AB}•\overrightarrow{{C_1}A}={a^2}$B.$\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}=\sqrt{2}{a^2}$C.$\overrightarrow{BC}•\overrightarrow{{A_1}D}={a^2}$D.$\overrightarrow{AB}•\overrightarrow{{C_1}{A_1}}={a^2}$

分析 由題意畫出圖形,建立空間右手系,求出向量的坐標(biāo),代入數(shù)量積公式得答案.

解答 解:建立如圖所示的空間直角坐標(biāo)系,
則$\overrightarrow{AB}=(0,0,a)$,$\overrightarrow{{C}_{1}A}=(a,-a,-a)$,
$\overrightarrow{{A}_{1}{C}_{1}}=(-a,a,0)$,$\overrightarrow{BC}=(-a,0,0)$,$\overrightarrow{{A}_{1}D}=(-a,0,-a)$,
$\overrightarrow{{C}_{1}{A}_{1}}=(a,-a,0)$.
∴$\overrightarrow{AB}•\overrightarrow{{C}_{1}A}=-{a}^{2}$,$\overrightarrow{AB}•\overrightarrow{{A}_{1}{C}_{1}}=0$,$\overrightarrow{BC}•\overrightarrow{{A}_{1}D}={a}^{2}$,$\overrightarrow{AB}•\overrightarrow{{C}_{1}{A}_{1}}=0$.
故選:C.

點(diǎn)評(píng) 本題考查利用空間向量判斷空間兩直線的位置關(guān)系,關(guān)鍵是建立正確的空間右手系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(Ⅰ)求角B的大。
(Ⅱ)若△ABC的面積S=5$\sqrt{3}$,a=5,試求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求證:函數(shù)f(x)=-2x3-x在R上是單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線x+y-a=0被圓x2+y2=4截得的弦長為2$\sqrt{2}$,則實(shí)數(shù)a的值為( 。
A.2$\sqrt{7}$或-2$\sqrt{7}$B.2或-2C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列說法中:
①平行于同一直線的兩個(gè)平面平行;
 ②平行于同一平面的兩個(gè)不同平面平行;
③垂直于同一直線的兩條直線平行; 
④垂直于同一平面的兩條不重合直線平行;
其中正確的說法個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$\overrightarrow a=(-3,2,1),\overrightarrow b=(-1,0,4)$,則向量$\overrightarrow{a}$與$\overrightarrow{a}$-λ$\overrightarrow$垂直的充要條件是λ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過拋物線y2=2px(p>0)的焦點(diǎn)F且傾斜角為α的直線交拋物線于A、B兩點(diǎn),若S△ADF=4S△BOF,O為坐標(biāo)原點(diǎn),則sinα=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)雙曲線C經(jīng)過點(diǎn)(2,2),且與$\frac{y^2}{4}$-x2=1具有相同漸近線,則C的方程為$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1;離心率等于$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對(duì)于無窮數(shù)列{Tn},若正整數(shù)n0,使得n≥n0(n∈N*)時(shí),有Tn+1>Tn,則稱{Tn}為“n0~不減數(shù)列”.
(1)設(shè)s,t為正整數(shù),且s>t,甲:{xn}為“s~不減數(shù)列”,乙:{xn}為“t~不減數(shù)列”.
試判斷命題:“甲是乙的充分條件”的真假,并說明理由;
(2)已知函數(shù)y=f(x)與函數(shù)y=-$\frac{1}{x}$+2的圖象關(guān)于直線y=x對(duì)稱,數(shù)列{an}滿足a1=3,an+1=f(an)(n∈N*),如果{an}為“n0~不減數(shù)列”,試求n0的最小值;
(3)設(shè)yn=$\left\{\begin{array}{l}{f(\frac{4}{3}),(n=1)}\\{(\frac{1}{{2}^{n}}+1)cosnπ,(n≥2,n∈{N}^{*})}\end{array}\right.$,且xn-λyn=2n,是否存在實(shí)數(shù)λ使得{xn}為“$\frac{1}{2}$f(f($\frac{4}{3}$))~不減數(shù)列”?若存在,求出λ的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案